Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomers chlorosulfonated polyethylene

Elastomers, synthetic -acrylic elastomers [ELASTOMERS, SYNTHETIC - ACRYLIC ELASTOMERS] (Vol 8) -butyl rubber [ELASTOMERS, SYNTHETIC - BUTYL RUBBER] (Vol 8) -chlorosulfonated polyethylene [ELASTOMERS, SYNTHETIC - CHLOROSULFONATED POLYETHYLENE] (Vol 8) -ethylene-acrylic elastomers [ELASTOMERS, SYNTHETIC - ETHYLENE-ACRYLIC ELASTOMERS] (Vol 8) -ethylene-propylene-diene rubber [ELASTOMERS,SYNTHETTC - ETHYLENE-PROPYLENE-DIENE RUBBER] (Vol 8) -fluorocarbon elastomers [ELASTOMERS, SYNTHETIC - FLUOROCARBON ELASTOMERS] (Vol 8) -nitrile rubber [ELASTOMERS, SYNTHETIC - NITRILE RUBBER] (Vol 8) -phosphazenes [ELASTOMERS, SYNTHETIC - PHOSPHAZENES] (Vol 8) -polybutadiene [ELASTOMERS, SYNTHETIC - POLYBUTADIENE] (Vol 8) -polychloroprene [ELASTOMERS, SYNTHETIC - POLYCHLOROPRENE] (Vol 8) -polyethers (ELASTOMERS, SYNTHETIC - POLYETHERS] (Vol 8) -polyisoprene [ELASTOMERSSYNTHETTC - POLYISOPRENE] (Vol 9) -survey [ELASTOMERS, SYNTHETIC - SURVEY] (Vol 8)... [Pg.354]

Hypalon H-20 [DuPont Dow Elastomers DuPont Canada R.T Vanderbilt] Chem. Descrip. Chlorosulfonated polyethylene elastomer CAS68037-3 A... [Pg.419]

Synonyms Chlorosulfonated ethylene polymer Chlorosulfonated polyethylene CSM CSPE Ethene, homopolymer, chlorinated, chlorosulfonated Ethylene polymer, chlorosulfonated Ethylene resin, chlorosulfonated Polyethylene elastomer, chlorosulfonated Classification Olefin... [Pg.1295]

Ethylene polymer, chlorosulfonated Ethylene resin, chlorosulfonated Polyethylene elastomer, chlorosulfonated... [Pg.3480]

Cellulose acetate butyrate lonomer resin Polyethylene, chlorosulfonated Polyethylene elastomer, chlorinated Polyvinyl chloride Styrene-ethylene/butylene-styrene block copolymer Tetrafluoroethylene/propylene copolymer tubing, chemicals Polymethyl methacrylate tubing, flexible... [Pg.5832]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Most elastomers can be made iato either opea-ceUed or closed-ceUed materials. Natural mbber, SBR, nitrile mbber, polychloroprene, chlorosulfonated polyethylene, ethylene—propylene terpolymers, butyl mbbers, and polyacrylates have been successfuUy used (4,111,112). [Pg.407]

The use of TAG as a curing agent continues to grow for polyolefins and olefin copolymer plastics and mbbers. Examples include polyethylene (109), chlorosulfonated polyethylene (110), polypropylene (111), ethylene—vinyl acetate (112), ethylene—propylene copolymer (113), acrylonitrile copolymers (114), and methylstyrene polymers (115). In ethylene—propylene copolymer mbber compositions. TAG has been used for injection molding of fenders (116). Unsaturated elastomers, such as EPDM, cross link with TAG by hydrogen abstraction and addition to double bonds in the presence of peroxyketal catalysts (117) (see Elastol rs, synthetic). [Pg.88]

CSPE. Chlorosulfonated polyethylene (CSPE), a synthetic mbber manufactured by DuPont, is marketed under the name Hypalon. It can be produced as a self-curing elastomer designed to cure on the roof. The membrane is typically reinforced with polyester and is available in finished thicknesses of 0.75 to 1.5 mm. Because CSPE exhibits thermoplastic characteristics before it cures, it offers heat-weldable seams. After exposure on the roof, the membrane cures offering the toughness and mechanical set of a thermoset. The normal shelf life of the membrane for maintaining this thermoplastic characteristic is approximately six months. After the membrane is fully cured in the field, conventional adhesives are needed to make repairs. [Pg.213]

Natural mbber comes generally from southeast Asia. Synthetic mbbers are produced from monomers obtained from the cracking and refining of petroleum (qv). The most common monomers are styrene, butadiene, isobutylene, isoprene, ethylene, propylene, and acrylonitrile. There are numerous others for specialty elastomers which include acryUcs, chlorosulfonated polyethylene, chlorinated polyethylene, epichlorohydrin, ethylene—acryUc, ethylene octene mbber, ethylene—propylene mbber, fluoroelastomers, polynorbomene, polysulftdes, siUcone, thermoplastic elastomers, urethanes, and ethylene—vinyl acetate. [Pg.230]

Chlorosulfonated Polyethylene. This elastomer is made by the simultaneous chlorination and chlorosulfonation of polyethylene in an inert solvent. The resulting polymer is an odorless, colorless chip that is mixed and processed on conventional mbber equipment. The polymer typically contains 20-40% chlorine and 1% sulfur groups (see ElASTOL RS, SYNTHETIC-Cm OROSULFONATEDPOLYETHYLENE) (8). [Pg.233]

It is estimated that 27,000 t/yr of CSM have been commercially used in the United States. However, due to environmental problems in the manufacturing process, it has been necessary to develop a process that is much mote expensive. As a result many companies using CSM ate trying to replace the CSM with CPE or other elastomers. The result is a decline in the usage of this polymer. Chlorosulfonated polyethylene is sold under the trade name Hypalon (DuPont—Dow Company). [Pg.233]

Meta.1 Oxides. Halogen-containing elastomers such as polychloropreae and chlorosulfonated polyethylene are cross-linked by their reaction with metal oxides, typically ziac oxide. The metal oxide reacts with halogen groups ia the polymer to produce an active iatermediate which then reacts further to produce carbon—carbon cross-links. Ziac chloride is Hberated as a by-product and it serves as an autocatalyst for this reaction. Magnesium oxide is typically used with ZnCl to control the cure rate and minimize premature cross-linking (scorch). [Pg.236]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Chlorosulfonated polyethylene. Ethylene—acrylic elastomers. Ethylene—propjiene—diene mbber, Eluorocarbon elastomers. [Pg.464]

Prior to butyl mbber, the known natural and synthetic elastomers had reactive sites at every monomer unit. Unlike natural mbber, polychloroprene, and polybutadiene, butyl mbber had widely spaced olefin sites with aHyUc hydrogens. This led to the principle of limited functionahty synthetic elastomers that was later appHed to other synthetic elastomers, eg, chlorosulfonated polyethylene, siUcone mbber, and ethylene—propylene terpolymers. [Pg.480]

Chlorosulfonated polyethylene, Vol. 8, Ethylene—acrylic elastomers, Vol. 8, Ethylene—propjiene—diene mbber, Vol. 8, Eluorocarbon elastomers, Vol. 8,... [Pg.2]

Property ECO, CO Epichlrohydrin homopolymer and copolymer Fluorosihcone EPDM Ethylene propylene CSM Chlorosulfonated polyethylene FPM Fluorocarbon elastomers... [Pg.2473]

Rubber blends with cure rate mismatch is a burning issue for elastomer sandwich products. For example, in a conveyor belt composite structure there is always a combination of two to three special purpose rubbers and, depending on the rubber composition, the curatives are different. Hence, those composite rubber formulations need special processing and formulation to avoid a gross dissimilarity in their cure rate. Recent research in this area indicated that the modification of one or more rubbers with the same cure sites would be a possible solution. Thus, chlorosulfonated polyethylene (CSP) rubber was modified in laboratory scale with 10 wt% of 93% active meta-phenylene bismaleimide (BMI) and 0.5 wt% of dimethyl-di-(/ r/-butyl-peroxy) hexane (catalyst). Mixing was carried out in an oil heated Banbury-type mixer at 150-160°C. The addition of a catalyst was very critical. After 2 min high-shear dispersive melt mix-... [Pg.465]

The prime installation method is mechanically fastened but fully adhered and ballasted applications can also be used. CSPE exhibits strong resistance not only to weathering but also to a broad range of chemicals and pollutants it is also inherently ozone-resistant. It can be produced in many colors and the sheet widths are typically 5—6.5 ft (1.5—1.65 m). The physical characteristics of a CSPE sheet have been described (17) (see Elastomers, SYNTHETIC—CHLOROSULFONATED POLYETHYLENE). [Pg.213]

The polymer requires compounding with normal fillers to produce useful compounds. Chlorosulfonated polyethylene (CSM) excels in resistance to attack by oxygen, ozone, corrosive chemicals, and oil, and in addition has very good electrical properties. Electrical stability and resistance to corona and arc are good. The physical properties and abrasion resistance are also good. Light-colored goods made from CSM have excellent color-fastness. Due to the presence of chlorine atoms, this elastomer shows excellent flame resistance. [Pg.233]

Chlorosulfonated polyethylene A product obtained by treatment of polyethylene by chlorine and sulfur dioxide. It is an elastomer highly resistant to chemicals and ozone. [Pg.252]


See other pages where Elastomers chlorosulfonated polyethylene is mentioned: [Pg.101]    [Pg.306]    [Pg.596]    [Pg.101]    [Pg.306]    [Pg.596]    [Pg.354]    [Pg.782]    [Pg.947]    [Pg.1061]    [Pg.233]    [Pg.143]    [Pg.296]    [Pg.496]    [Pg.2463]    [Pg.835]    [Pg.481]    [Pg.776]    [Pg.44]    [Pg.202]    [Pg.143]    [Pg.13]    [Pg.13]   
See also in sourсe #XX -- [ Pg.101 ]

See also in sourсe #XX -- [ Pg.470 ]




SEARCH



Chlorosulfonated

Chlorosulfonated polyethylene

Chlorosulfonation

Polyethylene chlorosulfonation

© 2024 chempedia.info