Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloroform, organic solvents

To measure the mass of analyte that passes through the column and remains in the aqueous phase, it is necessary to have an alternate method of extraction ready to extract the aqueous phase. For example, the analysis of atrazine could be carried out on a water sample by liquid-liquid extraction. Thus, a 100-mL water sample is passed through a C-18 cartridge and the water is collected, a liquid-liquid extraction is performed with chloroform (organic solvent 3 in the worksheet), the chloroform evaporated to 100 pL, and the sample analyzed by GC/MS. The mass of atrazine not retained by the sorbent divided by the mass applied to the sorbent times 100 gives the percent breakthrough of the sorbent. This value is not the percent recovery but is the percent that passes through the SPE sorbent. [Pg.61]

Like bromine, iodine is soluble in organic solvents, for example chloroform, which can be used to extract it from an aqueous solution. The iodine imparts a characteristic purple colour to the organic layer this is used as a test for iodine (p. 349). NB Brown solutions are formed when iodine dissolves in ether, alcohol, and acetone. In chloroform and benzene a purple solution is formed, whilst a violet solution is produced in carbon disulphide and some hydrocarbons. These colours arise due to charge transfer (p. 60) to and from the iodine and the solvent organic molecules. [Pg.320]

Solid carbon dioxide (Dry Ice, Drikold) is employed when very low temperatures are required. If it is suspended in solvents, such as alcohol or a mixture of equal volumes of chloroform and carbon tetrachloride, temperatures down to — 50° can be easily attained. Lower temperatures still are reached if intimate mixtures of solid carbon dioxide and organic solvents are employed with ethyl alcohol, — 72° with... [Pg.61]

THE STATE OF NITRIC ACID IN INERT ORGANIC SOLVENTS The absence of ions in mixtures of acetic acid and nitric acid is shown by their poor electrical conductivity and the Raman spectra of solutions in acetic acid, nitromethane, and chloroform show only the absorptions of the solvent and molecular nitric acid the bands corresponding to the nitronium and nitrate ions cannot be detected. -... [Pg.32]

In a simple liquid-liquid extraction the solute is partitioned between two immiscible phases. In most cases one of the phases is aqueous, and the other phase is an organic solvent such as diethyl ether or chloroform. Because the phases are immiscible, they form two layers, with the denser phase on the bottom. The solute is initially present in one phase, but after extraction it is present in both phases. The efficiency of a liquid-liquid extraction is determined by the equilibrium constant for the solute s partitioning between the two phases. Extraction efficiency is also influenced by any secondary reactions involving the solute. Examples of secondary reactions include acid-base and complexation equilibria. [Pg.215]

Ben2onitri1e [100-47-0] C H CN, is a colorless Hquid with a characteristic almondlike odor. Its physical properties are Hsted in Table 10. It is miscible with acetone, ben2ene, chloroform, ethyl acetate, ethylene chloride, and other common organic solvents but is immiscible with water at ambient temperatures and soluble to ca 1 wt% at 100°C. It distills at atmospheric pressure without decomposition, but slowly discolors in the presence of light. [Pg.224]

Sodium acetate reacts with carbon dioxide in aqueous solution to produce acetic anhydride and sodium bicarbonate (49). Under suitable conditions, the sodium bicarbonate precipitates and can be removed by centrifugal separation. Presumably, the cold water solution can be extracted with an organic solvent, eg, chloroform or ethyl acetate, to furnish acetic anhydride. The half-life of aqueous acetic anhydride at 19°C is said to be no more than 1 h (2) and some other data suggests a 6 min half-life at 20°C (50). The free energy of acetic anhydride hydrolysis is given as —65.7 kJ/mol (—15.7 kcal/mol) (51) in water. In wet chloroform, an extractant for anhydride, the free energy of hydrolysis is strangely much lower, —50.0 kJ/mol (—12.0 kcal/mol) (51). Half-life of anhydride in moist chloroform maybe as much as 120 min. Ethyl acetate, chloroform, isooctane, and / -octane may have promise for extraction of acetic anhydride. Benzene extracts acetic anhydride from acetic acid—water solutions (52). [Pg.78]

Dicofol [54532-36-4] l,l-bis(/)-chlorophenyl)-2,2,2-trichloroethanol, R = Cl (139), is a white crystalline soHd (mp 79°C). This compound is insoluble in water and soluble in organic solvents, and in the presence of alkaU forms the inactive/),/) -dichloroben2ophenone and chloroform. Dicofol is a long-lasting acaricide and is active against all stages of mites. The rat oral LD qS are 809, 684 mg/kg. [Pg.295]

Thiosulfate titration of iodine is limited to an iodine concentration of 7.5 fig/mL (69). The use of organic solvents such as benzene, toluene, chloroform, and carbon tetrachloride as indicators in the titration of iodine have been proposed (70—72). These procedures increase the sensitivity of the titration so that 6.0 fig/mL of iodine can be detected, although a sensitivity of 2 fig/mL has been claimed (73). [Pg.364]

Naphthalene is very slightly soluble in water but is appreciably soluble in many organic solvents, eg, 1,2,3,4-tetrahydronaphthalene, phenols, ethers, carbon disulfide, chloroform, ben2ene, coal-tar naphtha, carbon tetrachloride, acetone, and decahydronaphthalene. Selected solubiUty data are presented in Table 4. [Pg.482]

Solvent extraction techniques are useful in the quantitative analysis of niobium. The fluoro complexes are amenable to extraction by a wide variety of ketones. Some of the water-insoluble complexes with organic precipitants are extractable by organic solvents and colorimetry is performed on the extract. An example is the extraction of the niobium—oxine complex with chloroform (41). The extraction of the niobium—pyrocatechol violet complex with tridodecylethylammonium bromide and the extraction of niobium—pyrocatechol—sparteine complex with chloroform are examples of extractions of water-soluble complexes. Colorimetry is performed on the extract (42,43). Colorimetry may also be performed directly on the water-soluble complex, eg, using ascorbic acid and 5-nitrosahcyhc acid (44,45). [Pg.25]

Methima ole. This compound is a white to pale buff crystalline powder with a faint characteristic odor. It is soluble in water, ethanol, and chloroform (1 g/5 mL) and only slightly soluble in other organic solvents. A detailed chemical, analytical, spectral, and chromatographic description is available (44). It is assayed titrimetrically with NaOH (54). [Pg.54]

The heavy metal salts, ia contrast to the alkah metal salts, have lower melting points and are more soluble ia organic solvents, eg, methylene chloride, chloroform, tetrahydrofiiran, and benzene. They are slightly soluble ia water, alcohol, ahphatic hydrocarbons, and ethyl ether (18). Their thermal decompositions have been extensively studied by dta and tga (thermal gravimetric analysis) methods. They decompose to the metal sulfides and gaseous products, which are primarily carbonyl sulfide and carbon disulfide ia varying ratios. In some cases, the dialkyl xanthate forms. Solvent extraction studies of a large number of elements as their xanthate salts have been reported (19). [Pg.361]

Stability. Avermectins are highly lipophilic substances and dissolve in most organic solvents such as chloroform, methylene chloride, acetone, alcohols, toluene, cyclohexane, dimethylformamide, dimethyl sulfoxide, and tetrahydrofiiran. Thek solubiUty in water is correspondingly low, only 0.006-0.009 ppm (= mg/L). [Pg.281]

Arsonium salts have found considerable use in analytical chemistry. One such use involves the extraction of a metal complex in aqueous solution with tetraphenyiarsonium chloride in an organic solvent. Titanium(IV) thiocyanate [35787-79-2] (157) and copper(II) thiocyanate [15192-76-4] (158) in hydrochloric acid solution have been extracted using tetraphenyiarsonium chloride in chloroform solution in this manner, and the Ti(IV) and Cu(II) thiocyanates deterrnined spectrophotometricaHy. Cobalt, palladium, tungsten, niobium, and molybdenum have been deterrnined in a similar manner. In addition to their use for the deterrnination of metals, anions such as perchlorate and perrhenate have been deterrnined as arsonium salts. Tetraphenyiarsonium permanganate is the only known insoluble salt of this anion. [Pg.339]

Production of cellulose esters from aromatic acids has not been commercialized because of unfavorable economics. These esters are usually prepared from highly reactive regenerated cellulose, and their physical properties do not differ markedly from cellulose esters prepared from the more readily available aHphatic acids. Benzoate esters have been prepared from regenerated cellulose with benzoyl chloride in pyridine—nitrobenzene (27) or benzene (28). These benzoate esters are soluble in common organic solvents such as acetone or chloroform. Benzoate esters, as well as the nitrochloro-, and methoxy-substituted benzoates, have been prepared from cellulose with the appropriate aromatic acid and chloroacetic anhydride as the impelling agent and magnesium perchlorate as the catalyst (29). [Pg.251]

Examples of polar organic solvents that dissolve HPC are methanol, ethanol, propylene glycol, and chloroform. There is no tendency for HPC to precipitate as the temperature is raised. In fact, elevated temperatures improve the solvent power of organic Uquids. [Pg.279]

Trichloroethane [71-55-6] methyl chloroform, CH CCl, is a colorless, non-flammable Hquid with a characteristic ethereal odor. It is miscible with other chlorinated solvents and soluble in common organic solvents. The compound was first prepared by Regnault about 1840. [Pg.9]

Extraction from Aqueous Solutions Critical Fluid Technologies, Inc. has developed a continuous countercurrent extraction process based on a 0.5-oy 10-m column to extract residual organic solvents such as trichloroethylene, methylene chloride, benzene, and chloroform from industrial wastewater streams. Typical solvents include supercritical CO9 and near-critical propane. The economics of these processes are largely driven by the hydrophihcity of the product, which has a large influence on the distribution coefficient. For example, at 16°C, the partition coefficient between liquid CO9 and water is 0.4 for methanol, 1.8 for /i-butanol, and 31 for /i-heptanol. [Pg.2003]

The preparations are much simplified if a stoichiometric amount of hydrogen halide is added using an indicator to determine the end point. We have found that 1,9-diphenylnona-1,3,6,8-tetraen-5-one (dicinnamalacetone) is of appropriate basicity to detect excess anhydrous hydrogen halides in organic solvents including chloroform, dichloromethane, benzene, toluene, acetic acid, and acetone (but not in alcohols). The reaction between the... [Pg.144]

Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water. They can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides. [Pg.63]

Narcosis Narcosis is a state of deep stupor or unconsciousness, produced by a chemical substance, such as a drug or anesthesia. Inhalation of certain chemicals can lead to narcosis. For example, diethyl ether and chloroform, two common organic solvents, were among the first examples of anesthesia known. Many other chemicals that you would not suspect can also cause narcosis. For example, even though nitrogen gas comprises 80% of the air we breathe and is considered chemically inert (unreactive) it can cause narcosis under certain conditions. Always work with adequate inhalation and avoid inhaling chemical fumes, mists, dusts etc. whenever possible. Use fume hoods and respirators as necessary. [Pg.537]

Mono-substitution occurs most readily in the stepwise replacement of the halogen substituents of 2,4,6-trichloro-s-triazine with aqueous methanol and sodium bicarbonate (30°, 30 min), the monomethoxy derivative (324) is obtained on heating (65°, 30 min), the disubstitu-ted derivative is formed and on brief heating (65°) with the more basic sodium carbonate or methanolic sodium hydroxide (25°, 3 hr) complete methoxylation (320) occurs. Ethanolic ethoxide (25°, 1 hr) or sodium carbonate (35°) is sufficient to give complete ethoxy-dechlorination. The corresponding phenoxy derivatives are obtained on treatment with one (0°), two (15°, 1 hr), or three equivalents (25-70°, 3 hr) of various sodium phenoxides in aqueous acetone. The stepwise reaction with phenols, alcohols, or thiols proceeds in better yield in organic solvents (acetone or chloroform) with collidine or 2,6-lutidine as acid acceptors than in aqueous sodium bicarbonate. ... [Pg.302]

The salts of 3-acetyl-18/3-glycyrrhetinic acid can be prepared by reaction between 3-acetyl-18/3-glycyrrhetinic acid and an aluminum alcohoiate. Preferably lower alcoholates are used, i.e., alcoholates in which the alkoxy group or groups have from one to four carbon atoms. The salification reaction may be carried out at room temperature or at an elevated temperature in conventional fashion, preferably in the presence of organic solvents. As organic solvents may be used alcohols, ethers, ketones, chlorinated solvents (methylene chloride, chloroform) ethyl acetate, etc. [Pg.19]


See other pages where Chloroform, organic solvents is mentioned: [Pg.20]    [Pg.319]    [Pg.139]    [Pg.97]    [Pg.116]    [Pg.200]    [Pg.221]    [Pg.52]    [Pg.346]    [Pg.75]    [Pg.37]    [Pg.523]    [Pg.18]    [Pg.55]    [Pg.58]    [Pg.163]    [Pg.425]    [Pg.421]    [Pg.44]    [Pg.56]    [Pg.160]    [Pg.800]    [Pg.174]    [Pg.339]    [Pg.206]   
See also in sourсe #XX -- [ Pg.3 , Pg.30 ]

See also in sourсe #XX -- [ Pg.3 , Pg.30 ]




SEARCH



Chloroform solvent

© 2024 chempedia.info