Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride states

Solvent Chloride Reaction time Metal chloride (%) State Ref. [Pg.306]

Franklin in early research on ammonia and aluminium chloride stated that the anhydrous salt did not dissolve in liquid ammonia. Persoz 2 investigated the action of ammonia on aluminium chloride and described a substance of composition A1C13.8NH3. [Pg.58]

Carbon is a reducing agent thus, it follows that when in contact with chlorine it will reduce it to the chloride state. Carbon, itself, will be oxidized to carbon dioxide. The chemical reactions follow ... [Pg.781]

Apply some common sense when you read MSDSs and bottle labels. Using these chemicals does not mean you will experience the consequences that can potentially result from exposure to each chemical. For example, an MSDS for sodium chloride states, "Exposure to this product may have serious adverse health effects." Despite the apparent severity of this cautionary statement, it would not be reasonable to expect people to stop using sodium chloride in a chemistry experiment or to stop sprinkling a small amount of it (as table salt) on eggs to enhance their flavor. In many cases, the consequences described in MSDSs from exposure to chemicals are somewhat overstated, particularly for students using these chemicals to perform a laboratory experiment. [Pg.587]

Exists as the (Hg —Hg) ion. Other polymercury cations, e.g. Hgj (Hg plus AsFj), Hg4 etc., are also known. All positive oxidation state compounds of Hg are readily reduced to the metal, mercury chlorides... [Pg.254]

The development of scanning probe microscopies and x-ray reflectivity (see Chapter VIII) has allowed molecular-level characterization of the structure of the electrode surface after electrochemical reactions [145]. In particular, the important role of adsorbates in determining the state of an electrode surface is illustrated by scanning tunneling microscopic (STM) images of gold (III) surfaces in the presence and absence of chloride ions [153]. Electrodeposition of one metal on another can also be measured via x-ray diffraction [154]. [Pg.203]

Surface heterogeneity may be inferred from emission studies such as those studies by de Schrijver and co-workers on P and on R adsorbed on clay minerals [197,198]. In the case of adsorbed pyrene and its derivatives, there is considerable evidence for surface mobility (on clays, metal oxides, sulfides), as from the work of Thomas [199], de Mayo and co-workers [200], Singer [201] and Stahlberg et al. [202]. There has also been evidence for ground-state bimolecular association of adsorbed pyrene [66,203]. The sensitivity of pyrene to the polarity of its environment allows its use as a probe of surface polarity [204,205]. Pyrene or ofter emitters may be used as probes to study the structure of an adsorbate film, as in the case of Triton X-100 on silica [206], sodium dodecyl sulfate at the alumina surface [207] and hexadecyltrimethylammonium chloride adsorbed onto silver electrodes from water and dimethylformamide [208]. In all cases progressive structural changes were concluded to occur with increasing surfactant adsorption. [Pg.418]

Both these molecules exist in the gaseous state and both are trigonal planar as indicated by reference to Table 2.8. However, in each, a further covalent bond can be formed, in which both electrons of the shared pair are provided by one atom, not one from each as in normal covalent bonding. For example, monomeric aluminium chloride and ammonia form a stable compound ... [Pg.41]

Covalent bonding, in all the cases so far quoted, produces molecules not ions, and enables us to explain the inability of the compounds formed to conduct electricity. Covalently bonded groups of atoms can, however, also be ions. When ammonia and hydrogen chloride are brought together in the gaseous state proton transfer occurs as follows ... [Pg.42]

State the type of chemical binding in each of the chlorides represented by the empirical formulae... [Pg.61]

Metals in higher oxidation states form halides which are essentially covalent, for example AICI3, SnCl, FeClj when these compounds dissolve in water they do so by a strongly exothermic process. Indeed it is perhaps incorrect to think of this only as a dissolution process, since it is more like a chemical reaction—but to differentiate for a particular substance is not easy, as we shall see. The steps involved in the case of aluminium chloride can be represented as... [Pg.80]

Lead(IV) oxide is found to have a considerable oxidising power, again indicating that the oxidation state +2 is generally more stable for lead than oxidation state +4. Concentrated hydrochloric acid, for example, reacts with PbO at room temperature to form lead(II) chloride and chlorine ... [Pg.194]

The hydrogensulphates (or bisulphates) containing the ion HSO4, are only known in the solid state for the alkali metals and ammonium. Sodium hydrogensulphate is formed when sodium chloride is treated with cold concentrated sulphuric acid ... [Pg.303]

Chlorine reacts with most elements, both metals and non-metals except carbon, oxygen and nitrogen, forming chlorides. Sometimes the reaction is catalysed by a trace of water (such as in the case of copper and zinc). If the element attacked exhibits several oxidation states, chlorine, like fluorine, forms compounds of high oxidation state, for example iron forms iron(III) chloride and tin forms tin(IV) chloride. Phosphorus, however, forms first the trichloride, PCI3, and (if excess chlorine is present) the pentachloride PCI5. [Pg.322]

However, if heated hydrogen chloride is passed over heated metals, the chloride is formed in the case of a metal exhibiting variable oxidation state, the lower chloride is obtained ... [Pg.331]

When an element has more than one oxidation state the lower halides tend to be ionic whilst the higher ones are covalent—the anhydrous chlorides of lead are a good example, for whilst leadfll) chloride, PbCl2, is a white non-volatile solid, soluble in water without hydrolysis, leadflV) chloride, PbC, is a liquid at room temperature (p. 200) and is immediately hydrolysed. This change of bonding with oxidation state follows from the rules given on p.49... [Pg.344]

Halogens can act as ligands and are commonly found in complex ions the ability of fluorine to form stable complex ions with elements in high oxidation states has already been discussed (p. 316). However, the chlorides of silver, lead(Il) and mercury(l) are worthy of note. These chlorides are insoluble in water and used as a test for the metal, but all dissolve in concentrated hydrochloric acid when the complex chlorides are produced, i.e. [AgCl2] , [PbC ] and [Hg Clj]", in the latter case the mercury(I) chloride having also disproportionated. [Pg.345]

Scandium is not an uncommon element, but is difficult to extract. The only oxidation state in its compounds is -I- 3, where it has formally lost the 3d 4s electrons, and it shows virtually no transition characteristics. In fact, its chemistry is very similar to that of aluminium (for example hydrous oxide SC2O3, amphoteric forms a complex [ScFg] chloride SCCI3 hydrolysed by water). [Pg.369]

The precautions stated are to avoid uptake of oxygen, nitrogen and other impurities which render the metal brittle the excess magnesium and magnesium chloride can be removed by volatilisation above 1300 K. [Pg.370]

This is the most common and stable state of chromium in aqueous solution. The Cr ion, with 2d electrons, forms mainly octahedral complexes [CrX ], which are usually coloured, and are kweticallv inert, i.e. the rate of substitution of X by another hgand is very slow consequently a large number of such complexes have been isolated (see below, under chromium(III) chloride). [Pg.380]

For this reaction, charcoal is a catalyst if this is omitted and hydrogen peroxide is used as the oxidant, a red aquopentammino-cobalt(lll) chloride, [Co(NH3)jH20]Cl3, is formed and treatment of this with concentrated hydrochloric acid gives the red chloro-p0itatnmino-coba. t(lll) chloride, [Co(NH3)5Cl]Cl2. In these latter two compounds, one ammonia ligand is replaced by one water molecule or one chloride ion it is a peculiarity of cobalt that these replacements are so easy and the pure products so readily isolated. In the examples quoted, the complex cobalt(III) state is easily obtained by oxidation of cobalt(II) in presence of ammonia, since... [Pg.403]


See other pages where Chloride states is mentioned: [Pg.383]    [Pg.293]    [Pg.78]    [Pg.383]    [Pg.293]    [Pg.78]    [Pg.92]    [Pg.93]    [Pg.108]    [Pg.158]    [Pg.210]    [Pg.237]    [Pg.250]    [Pg.264]    [Pg.318]    [Pg.348]    [Pg.386]    [Pg.392]    [Pg.409]    [Pg.579]    [Pg.152]    [Pg.170]    [Pg.207]    [Pg.255]    [Pg.351]    [Pg.367]    [Pg.368]    [Pg.371]    [Pg.383]    [Pg.397]    [Pg.401]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Ammonium chloride, oxidation state

Ammonium chloride, oxidation state elements

Chloride United States

Chloride ligands solid-state synthesis

Hydrogen chloride, electronic states

Silver chloride, ionic states

Sodium chloride solid state structure, 148-9

Sodium chloride states

Transition states chloride reactions

Transition states cumyl chloride solvolysis

Transition states methyl chloride

Transition states methyl chloride/nucleophile

© 2024 chempedia.info