Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition states chloride reaction

There have been both experimental and theoretical studies to probe the degree of concertedness in gas-phase substitutions as shown in Scheme 1. Is (2) an intermediate with a finite lifetime, or are the addition and elimination steps concerted so that (2) is a transition state Experimental molecular beam studies on the femtosecond time-scale have been reported for the reaction of chloride ions with the iodobenzene cation to yield chlorobenzene and iodine. The results show an 880 fs reaction time for the elimination process, indicating a highly non-concerted process, so that here the (x-complex is an intermediate rather than a transition state. The reactions of halobenzene cations with ammonia have been interpreted in terms of the formation of an addition complex which may eliminate either halogen, X , or hydrogen halide, HX, depending on the nature of the halogen. ... [Pg.242]

Albery and Bell found that, if is identified with the difference in pseudo first-order rate constants in HCIO4 and HCl divided by the concentrations of acid and chloride ions, a plot of log against the square of the mean ionic activity coefficient of HCl, /, gives a straight line. This is nicely consistent with the above formulation if f jf can be expected to be fairly independent of acid concentration. In fact, this is quite plausible over the range of acid concentration considered, since both diazoacetic ester and its transition state for reaction with chloride are dipolar species of comparable size (1 and 2). [Pg.338]

The formation of the transition state for reaction (7.3.23) is shown in fig. 7.6. The electrophilic reactant is the simple molecule methyl iodide, which has tetrahedral geometry with respect to the carbon atom. As the attacking chloride ion... [Pg.321]

A) A simplified reaction coordinate diagram depicting the concept of the transition state B) reaction coordinate for the S 2 reaction of methyl chloride with OH C) reaction coordinate for the N1 reaction of benzyl choride with OH ... [Pg.122]

HI is also used in organic chemistry to convert primary alcohols into alkyl halides. This reaction is an Sn2 substitution, in which the iodide ion replaces the "activated" hydroxyl group (water). HI is preferred over other hydrogen halides in polar protic solvents because the iodide ion is a much better nucleophile than bromide or chloride, so the reaction can take place at a reasonable rate without much heating. The large iodide anion is less solvated and more reactive in polar protic solvents and thus causes the reaction to proceed faster because of stronger partial bonds in the transition state. This reaction also occurs for secondary and tertiary alcohols, but substitution occurs via the SnI pathway. [Pg.7]

The more extensive problem of correlating substituent effects in electrophilic substitution by a two-parameter equation has been examined by Brown and his co-workers. In order to define a new set of substituent constants. Brown chose as a model reaction the solvolysis of substituted dimethylphenylcarbinyl chlorides in 90% aq. acetone. In the case ofp-substituted compounds, the transition state, represented by the following resonance structures, is stabilized by direct resonance interaction between the substituent and the site of reaction. [Pg.138]

The suitability of the model reaction chosen by Brown has been criticised. There are many side-chain reactions in which, during reaction, electron deficiencies arise at the site of reaction. The values of the substituent constants obtainable from these reactions would not agree with the values chosen for cr+. At worst, if the solvolysis of substituted benzyl chlorides in 50% aq. acetone had been chosen as the model reaction, crJ-Me would have been —0-82 instead of the adopted value of —0-28. It is difficult to see how the choice of reaction was defended, save by pointing out that the variation in the values of the substituent constants, derivable from different reactions, were not systematically related to the values of the reaction constants such a relationship would have been expected if the importance of the stabilization of the transition-state by direct resonance increased with increasing values of the reaction constant. [Pg.139]

With the potential energies shown on a common scale we see that the transition state for formation of (CH3)3C is the highest energy point on the diagram A reaction can proceed no faster than its slowest step which is referred to as the rate determining step In the reaction of tert butyl alcohol with hydrogen chloride formation of the... [Pg.159]

The major difference between the two mechanisms is the second step The second step m the reaction of tert butyl alcohol with hydrogen chloride is the ummolecular dis sociation of tert butyloxonium ion to tert butyl cation and water Heptyloxonium ion however instead of dissociating to an unstable primary carbocation reacts differently It IS attacked by bromide ion which acts as a nucleophile We can represent the transition state for this step as... [Pg.164]

The sp hybridized carbon of an acyl chloride is less sterically hindered than the sp hybridized carbon of an alkyl chloride making an acyl chloride more open toward nude ophilic attack Also unlike the 8 2 transition state or a carbocation intermediate m an Stvfl reaction the tetrahedral intermediate m nucleophilic acyl substitution has a stable arrangement of bonds and can be formed via a lower energy transition state... [Pg.841]

An example with the characteristics of the coupled displacement is the reaction of azide ion with substituted 1-phenylethyl chlorides. Although the reaction exhibits second-order kinetics, it has a substantially negative p value, indicative of an electron deficiency at the transition state. The physical description of this type of activated complex is the exploded S 2 transition state. [Pg.275]

Even though the rearrangements suggest that discrete carbocation intermediates are involved, these reactions frequently show kinetics consistent with the presence of at least two hydrogen chloride molecules in the rate-determining transition state. A termolecular mechanism in which the second Itydrogen chloride molecule assists in the ionization of the electrophile has been suggested. ... [Pg.356]

The reaction of phenyllithium and alfyl chloride labeled with C reveals that allylic rearrangement occurs. About three-fourths of the product results from bond formation at C-3 rather than C-1. This can be accounted for by a cyclic transition state. ... [Pg.434]

Kinetic studies of the reaction of alcohols with acyl chlorides in polar solvents in the absence of basic catalysts generally reveal terms both first-order and second-order in alcohol. Transition states in which the second alcohol molecule acts as a proton acceptor have been proposed ... [Pg.486]

An explanation for the stereoselectivity of the reaction involves optimal overlap of the 7t-orbital of the carbonyl with the developing electron rich p-orbital on C2 during the Sj,j2 displacement of the chloride by the alkoxide (24). Thus, orbital overlap imposes conformational constraints in the transition state that leads to nonbonding interactions disfavoring transition state 15P... [Pg.17]

Probably the most important development of the past decade was the introduction by Brown and co-workers of a set of substituent constants,ct+, derived from the solvolysis of cumyl chlorides and presumably applicable to reaction series in which a delocalization of a positive charge from the reaction site into the aromatic nucleus is important in the transition state or, in other words, where the importance of resonance structures placing a positive charge on the substituent - -M effect) changes substantially between the initial and transition (or final) states. These ct+-values have found wide application, not only in the particular side-chain reactions for which they were designed, but equally in electrophilic nuclear substitution reactions. Although such a scale was first proposed by Pearson et al. under the label of and by Deno et Brown s systematic work made the scale definitive. [Pg.211]

This study suggests a radically new explanation for the nature of Lewis acid activation in the Simmons-Smith cyclopropanation. The five-centered migration of the halide ion from the chloromethylzinc group to zinc chloride as shown in TS2 and TS4 has never been considered in the discussion of a mechanism for this reaction. It remains to be seen if some experimental support can be found for this unconventional hypothesis. The small energy differences between all these competing transition states demand caution in declaring any concrete conclusions. [Pg.145]

The activation energy for the favored transition state TS4 (22.8 kcal mol ) is still somewhat high. Still, the qualitative predictions of enhanced reactivity of the zinc alkoxide-zinc chloride complexes are in full agreement with contemporary ideas about this reaction and represent a major advance in the theoretical understanding of the cyclopropanation process. [Pg.146]

Self-condensation of the substituted propiophenone, 15, by the pinacol reaction proceeds to give the glycol, 16, as the meso isomer. (If it is assumed that the transition state for this reaction resembles product, this stereoselectivity can be rationalized on the grounds of steric interaction compare A, which leads to the observed product, with B.) Dehydration under very specialized conditions (acetyl chloride, acetic anhydride) affords the bisstyrene-type diene (17). Removal of the acyl groups by means of base affords the synthetic estrogen, dien-... [Pg.102]

Problem 6.18 What about the second step in the electrophilic addition of HCl to an alkene—the reaction of chloride ion with the carbocation intermediate Is this step exergonic or endergontc Does the transition state for this second step resemble the reactant (carbocation) or product (alkyl chloride) Make a rough drawing of what the transition-state structure might look like. [Pg.199]


See other pages where Transition states chloride reaction is mentioned: [Pg.896]    [Pg.229]    [Pg.193]    [Pg.83]    [Pg.629]    [Pg.123]    [Pg.139]    [Pg.350]    [Pg.111]    [Pg.133]    [Pg.326]    [Pg.298]    [Pg.303]    [Pg.629]    [Pg.159]    [Pg.319]    [Pg.204]    [Pg.238]    [Pg.298]    [Pg.582]    [Pg.159]    [Pg.1271]    [Pg.63]    [Pg.305]    [Pg.198]    [Pg.268]    [Pg.141]    [Pg.76]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Chloride states

Transition states reactions

© 2024 chempedia.info