Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral carboxylate catalysts

Reactions between imines and a-diazo carboxylates afford aziridine-2-carboxylates [55]. An asymmetric version of this reaction using chiral nonracemic catalysts has been described [53, 56-58]. As an example, catalytic aziridination of inline 44 (Scheme 3.14) with ethyl diazoacetate in the presence of 10% catalyst generated... [Pg.79]

Trost et al.59 were the first to report enantioselectivity in the transition metal-catalyzed Alder-ene reaction. Several different acids were surveyed for the degree of efficacy in oxidizing the Pd(0) precursor to the active Pd(n) species and for compatibility with the catalyst, substrate, and product. Among acids surveyed were several chiral carboxylic acids products of reactions using these optically active acids were formed with modest enantioselectivity. (A)-binaphthoic acid gave the most promising result, with the cyclized product 83 obtained with 33% ee (Equation (52)). [Pg.579]

Chiral dirhodium(II) catalysts with carboxylate or carboxamidate ligands have recently been developed to take advantage of their versatility in metal carbene transformation, and these have now become the catalysts of choice for cyclopropanation. Chiral carboxylate ligands 195,103 196,104 and 197105 have been used for tetrasubstitution around a dirhodium(II) core. However, the enantioselectivity in intermolecular reactions with simple ketenes is marginal. [Pg.316]

Dirhodium(II) carboxylate catalysts have been used extensively for the catalysis of carbene insertions. In many cases, impressive selectivities have been achieved (19-21). In an effort to find selective catalysts for carbenoid insertions, Moody screened a series of dirhodium(II) carboxylate catalysts for their ability to catalyze carbenoid Si-H insertion (22). The authors surveyed the commercially available carboxylic acids, -10,000 of which are chiral. The members of this group that contained functionality that is incompatible to the reaction were culled out. The remaining chiral carboxylic acids (-2000 compounds) were then grouped into 80 different clusters. There is no discussion presented for the criteria used in the grouping of the acids. A representative acid from each cluster was then chosen for... [Pg.437]

Chiral carboxylates such as a-phenylcarboxylic acids, lactic acid, and mandelic acid were used by Brunner [13], but, as mentioned above, these ligands did not afford very enantioselective catalysts. Aminoacids provided the possibility of introducing bulky substituents at the nitrogen atom, but these ligands based on proline and phenylanaline also gave modest results (Figure 17.12). [Pg.367]

Dynamic Resolution of Chirally Labile Racemic Compounds. In ordinary kinetic resolution processes, however, the maximum yield of one enantiomer is 50%, and the ee value is affected by the extent of conversion. On the other hand, racemic compounds with a chirally labile stereogenic center may, under certain conditions, be converted to one major stereoisomer, for which the chemical yield may be 100% and the ee independent of conversion. As shown in Scheme 62, asymmetric hydrogenation of 2-substituted 3-oxo carboxylic esters provides the opportunity to produce one stereoisomer among four possible isomers in a diastereoselective and enantioselective manner. To accomplish this ideal second-order stereoselective synthesis, three conditions must be satisfied (1) racemization of the ketonic substrates must be sufficiently fast with respect to hydrogenation, (2) stereochemical control by chiral metal catalysts must be efficient, and (3) the C(2) stereogenic center must clearly differentiate between the syn and anti transition states. Systematic study has revealed that the efficiency of the dynamic kinetic resolution in the BINAP-Ru(H)-catalyzed hydrogenation is markedly influenced by the structures of the substrates and the reaction conditions, including choice of solvents. [Pg.241]

Enantiocontrol with 21-23 is lower than that achieved with chiral copper catalysts for reactions of diazoacetates with styrene and a few other alkenes examined thus far [68], but the carboxamidates display far greater stereocontrol than do the dirhodium(II) carboxylates for the same reactions [69]. However, Hashimoto has reported the use of chiral piperidinonate 24 and found exceptional enantiocontrol in the cyclopropanation of styrene and both mono- and... [Pg.205]

Besides the glycinate ester derivatives described above, other types of enolate-forming compounds have proved to be useful substrates for enantioselective alkylation reactions in the presence of cinchona alkaloids as chiral PTC catalysts. The Corey group reported the alkylation of enolizable carboxylic acid esters of type 57 in the presence of 25 as organocatalyst [69]. The alkylations furnished the desired a-substituted carboxylate 58 in yields of up to 83% and enantioselectivity up to 98% ee (Scheme 3.23). It should be added that high enantioselectivity in the range 94-98% ee was obtained with a broad variety of alkyl halides as alkylation agents. The product 58c is a versatile intermediate in the synthesis of an optically active tetra-hydropyran. [Pg.33]

Table 6.43). These authors proposed activation of nitrosobenzene to aldol addition through N-coordination when using chiral carboxylic acid catalyst 134 and through O-coordination when using the less-acidic taddol catalyst 119 to explain the observed regioselectivities. Table 6.43). These authors proposed activation of nitrosobenzene to aldol addition through N-coordination when using chiral carboxylic acid catalyst 134 and through O-coordination when using the less-acidic taddol catalyst 119 to explain the observed regioselectivities.
Another interesting feature of polymer-supported catalysts containing quaternary ammonium salts involves the development of enantioselective catalysis using salts derived from cinchonia or ephedra alkaloids.11341 The first application of such chiral supported catalysts in the Michael reaction between methyl 1-oxoindan-2-carboxylate and methyl vinyl ketone revealed a high chemical yield in condensation product (60-100 %) although the enantioselectivities were only moderate (ee <27 %). [Pg.188]

This collection begins with a series of three procedures illustrating important new methods for preparation of enantiomerically pure substances via asymmetric catalysis. The preparation of 3-[(1S)-1,2-DIHYDROXYETHYL]-1,5-DIHYDRO-3H-2.4-BENZODIOXEPINE describes, in detail, the use of dihydroquinidine 9-0-(9 -phenanthryl) ether as a chiral ligand in the asymmetric dihydroxylation reaction which is broadly applicable for the preparation of chiral dlols from monosubstituted olefins. The product, an acetal of (S)-glyceralcfehyde, is itself a potentially valuable synthetic intermediate. The assembly of a chiral rhodium catalyst from methyl 2-pyrrolidone 5(R)-carboxylate and its use in the intramolecular asymmetric cyclopropanation of an allyl diazoacetate is illustrated in the preparation of (1R.5S)-()-6,6-DIMETHYL-3-OXABICYCLO[3.1. OJHEXAN-2-ONE. Another important general method for asymmetric synthesis involves the desymmetrization of bifunctional meso compounds as is described for the enantioselective enzymatic hydrolysis of cis-3,5-diacetoxycyclopentene to (1R,4S)-(+)-4-HYDROXY-2-CYCLOPENTENYL ACETATE. This intermediate is especially valuable as a precursor of both antipodes (4R) (+)- and (4S)-(-)-tert-BUTYLDIMETHYLSILOXY-2-CYCLOPENTEN-1-ONE, important intermediates in the synthesis of enantiomerically pure prostanoid derivatives and other classes of natural substances, whose preparation is detailed in accompanying procedures. [Pg.294]

As we have seen, the Diels-Alder reaction can be both stereoselective and regioselective. In some cases, the Diels-Alder reaction can be made enantioselective Solvent effects are important in such reactions. The role of reactant polarity on the course of the reaction has been examined. Most enantioselective Diels-Alder reactions have used a chiral dienophile (e.g., 199) and an achiral diene,along with a Lewis acid catalyst (see below). In such cases, addition of the diene to the two faces of 199 takes place at different rates, and 200 and 201 are formed in different amounts. An achiral compound A can be converted to a chiral compound by a chemical reaction with a compound B that is enantiopure. After the reaction, the resulting diastereomers can be separated, providing enantiopure compounds, each with a bond between molecule A and chiral compound B (a chiral auxiliary). Common chiral auxiliaries include chiral carboxylic acids, alcohols, or sultams. In the case illustrated, hydrolysis of the product removes the chiral R group, making it a chiral auxiliary in this reaction. Asymmetric Diels-Alder reactions have also been carried out with achiral dienes and dienophiles, but with an optically active catalyst. Many chiral catalysts... [Pg.1202]

Enantioselective carbenoid cyclopropanation of achiral alkenes can be achieved with a chiral diazocarbonyl compound and/or chiral catalyst. In general, very low levels of asymmetric induction are obtained, when a combination of an achiral copper or rhodium catalyst and a chiral diazoacetic ester (e.g. menthyl or bornyl ester ) or a chiral diazoacetamide ° (see Section 1.2.1.2.4.2.6.3.3., Table 14, entry 3) is applied. A notable exception is provided by the cyclopropanation of styrene with [(3/ )-4,4-dimethyl-2-oxotetrahydro-3-furyl] ( )-2-diazo-4-phenylbut-3-enoate to give 5 with several rhodium(II) carboxylate catalysts, asymmetric induction gave de values of 69-97%. ° Ester residues derived from a-hydroxy esters other than ( —)-(7 )-pantolactone are not as equally well suited as chiral auxiliaries for example, catalysis by the corresponding rhodium(II) (S )-lactate provides (lS, 2S )-5 with a de value of 67%. [Pg.456]

The chiral diazo ester 29 was cyclized with four commonly used rhodium carboxylate catalysts (Table 2). It was found as before that rhodium pivalate... [Pg.223]

Early efforts in enantioselective intramolecular cyclopropanation using chiral rhodium catalysts focused on the use of carboxylates as hgands and although these catalysts were highly efficient kinetically in diazo decomposition, the enantiomeric excesses in the products were very hmited. For example, Rh2(S-mande-late)4, (2) in Fig. 3, achieved an ee of 12% in the cychzation in Eq. (18) [40]. [Pg.532]


See other pages where Chiral carboxylate catalysts is mentioned: [Pg.15]    [Pg.207]    [Pg.85]    [Pg.1231]    [Pg.4]    [Pg.983]    [Pg.248]    [Pg.33]    [Pg.872]    [Pg.364]    [Pg.238]    [Pg.450]    [Pg.17]    [Pg.440]    [Pg.295]    [Pg.178]    [Pg.6]    [Pg.203]    [Pg.218]    [Pg.219]    [Pg.27]    [Pg.341]    [Pg.113]    [Pg.23]    [Pg.194]    [Pg.1074]    [Pg.562]    [Pg.154]    [Pg.156]    [Pg.214]    [Pg.113]    [Pg.117]    [Pg.515]   


SEARCH



Carboxyl Catalyst

Carboxylation catalysts

Carboxylic chiral

Chiral catalysts

© 2024 chempedia.info