Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical separation Selectivity

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

In view of the selective character of many colorimetric reactions, it is important to control the operational procedure so that the colour is specific for the component being determined. This may be achieved by isolating the substance by the ordinary methods of inorganic analysis double precipitation is frequently necessary to avoid errors due to occlusion and co-precipitation. Such methods of chemical separation may be tedious and lengthy and if minute quantities are under consideration, appreciable loss may occur owing to solubility, supersaturation, and peptisation effects. Use may be made of any of the following processes in order to render colour reactions specific and/or to separate the individual substances. [Pg.673]

An important selection of materials to packaging, particularly food, is based on the permeability of the materials to oxygen, water vapor, and, in the case of packaging bananas, to ethylene gas that is used to artificially ripen the bananas. Selective permeability provides chemical separations, one of the most interesting of which is the use of PTFE materials to separate the hexafluorides of the different isotopes of uranium. [Pg.240]

Solid phase spectrophotometry proved to be an appropriate technique for the determination of colorants in foods dne to its simplicity, selectivity, reasonable cost, low detection limits, and use of conventional instrnmentation. This simple, sensitive, and inexpensive method allowed simnltaneons determinations of Snnset Yellow FCF (SY), Quinoline Yellow, and their nnsnlfonated derivatives [Sndan I (SUD) and Quinoline Yellow Spirit Soluble (QYSS)] in mixtnres. Mixtnres of food colorants containing Tartrazine, Sunset Yellow, Ponceau 4R, Amaranth, and Brilliant Blue were simultaneously analyzed with Vis spectrophotometry without previous chemical separation. ... [Pg.541]

The popularity of reversed-phase liquid chromatography (RPC) is easily explained by its unmatched simplicity, versatility and scope [15,22,50,52,71,149,288-290]. Neutral and ionic solutes can be separated simultaneously and the rapid equilibration of the stationary phase with changes in mobile phase composition allows gradient elution techniques to be used routinely. Secondary chemical equilibria, such as ion suppression, ion-pair formation, metal complexatlon, and micelle formation are easily exploited in RPC to optimize separation selectivity and to augment changes availaple from varying the mobile phase solvent composition. Retention in RPC, at least in the accepted ideal sense, occurs by non-specific hydrophobic interactions of the solute with the... [Pg.202]

Anions of weak acids can be problematic for detection in suppressed IEC because weak ionization results in low conductivity and poor sensitivity. Converting such acids back to the sodium salt form may overcome this limitation. Caliamanis et al. have described the use of a second micromembrane suppressor to do this, and have applied the approach to the boric acid/sodium borate system, using sodium salt solutions of EDTA.88 Varying the pH and EDTA concentration allowed optimal detection. Another approach for analysis of weak acids is indirect suppressed conductivity IEC, which chemically separates high- and low-conductance analytes. This technique has potential for detection of weak mono- and dianions as well as amino acids.89 As an alternative to conductivity detection, ultraviolet and fluorescence derivatization reagents have been explored 90 this approach offers a means of enhancing sensitivity (typically into the low femtomoles range) as well as selectivity. [Pg.293]

At least two driving forces have contributed to the recent increased use and development of multidimensional liquid chromatography (MDLC). These include the high resolution and peak capacity needed for proteomics studies and the independent size and chemical structure selectivity for resolving industrial polymers. In this regard, separation science focuses on a system approach to separation as individual columns can contribute only part of the separation task and must be incorporated into a larger separation system for a more in-depth analytical scheme. [Pg.489]

The plutonium concentration in marine samples is principally due to environmental pollution caused by fallout from nuclear explosions and is generally at very low levels [75]. Environmental samples also contain microtraces of natural a emitters (uranium, thorium, and their decay products) which complicate the plutonium determinations [76]. Methods for the determination of plutonium in marine samples must therefore be very sensitive and selective. The methods reported for the chemical separation of plutonium are based on ion exchange resins [76-80] or liquid-liquid extraction with tertiary amines [81], organophosphorus compounds [82,83], and ketones [84,85]. [Pg.354]

All of the above particulate investigations were based on mini-radiocarbon measurement techniques, with sample masses typically in the range of 5-10 mg-carbon. This constituted a major advantage, because it was practicable to select special samples (given region, source impact, sediment depth) and to further subject such samples to physical (size) or chemical separation before 14C measurement. This type of "serial selectivity" provides maximum information content about the samples and in fact it is essential when information is sought for the sources or atmospheric distributions of pure chemical species, such as methane or elemental carbon. [Pg.178]

On November 16, 1942, Los Alamos, New Mexico, was selected as the central site (Site Y) for a laboratory to research the physics and design of atomic weapons. Site X was at Oak Ridge, Tennessee and consisted of an experimental reactor, chemical separation plant, and electromagnetic separation facility. An area near... [Pg.35]

Hanford and Richland, Washington, was selected for industrial-scale plutonium production and chemical separations facilities on January 16, 1943. This site was named the Hanford Engineer Works (later named the Hanford Site). [Pg.36]

Remedy The overlapping of this nature may be eliminated either by prior chemical separation or by selection other spectral lines. [Pg.386]

As liquid chromatography plays a dominant role in chemical separations, advancements in the field of LC-NMR and the availability of commercial LC-NMR instrumentation in several formats has contributed to the widespread acceptance of hyphenated NMR techniques. The different methods for sampling and data acquisition, as well as selected applications will be discussed in this section. LC-NMR has found a wide range of applications including structure elucidation of natural products, studies of drug metabolism, transformation of environmental contaminants, structure determination of pharmaceutical impurities, and analysis of biofiuids such as urine and blood plasma. Readers interested in an in-depth treatment of this topic are referred to the recent book on this subject [25]. [Pg.363]

The idea of using membranes to filter molecules on the basis of size is not without precedent. Dialysis is used routinely to separate low molecular weight species from macromolecules [105]. In addition, nanofiltration membranes are known for certain small molecule separations (such as water purification), but such membranes typically combine both size and chemical transport selectivity and are particularly designed for the separation involved. Hence, in spite of the importance of the concept, synthetic membranes that contain a collection of monodisperse, molecule-sized pores that can be used as molecular filters to separate small molecules on the basis of size are currently not available. [Pg.31]

Most HPLC applications are performed with non-polar columns, thus in the reversed-phase mode (RPLC), since it allows simple and versatile conditions. Another advantage is that in general the applied mobile phase is an aqueous buffer. Moreover in RPLC chemical equilibria such as ion suppression, ion-pair formation, metal complexation, and micelle formation can easily be exploited to optimize separation selectivity. This explains the large number of commercially available non-polar HPLC columns. " ... [Pg.426]

The primary advantage of CD complexation is to stabilize and protect sensitive host molecules, such as flavors, odors, or pharmaceuticals. CDs sharply reduce the volatility, chemical, thermal and photo reactivity of guest moleciiles. More recently, CDs have been used for separation of components in solution. For example, CDs can remove reactive components from fhiit juices to prevent oxidation or eUminate bitterness. Attachment of CDs to chromatographic supports provides chiral separation, selective component removal and modified chemical reactivity. A number of modified and pol3nnerized CD materials have gained acceptance as separation media (9). [Pg.373]

The proposed ID TOCSY-NOESY experiment is illustrated by the assignment of NOEs from anomeric protons H-lc and H-ld of the polysaccharide 1. Because the resonances of H-lc and H-ld overlapped, this assignment was not possible from a ID NOESY spectrum as shown in fig. 3(b). Although these protons differed in their chemical shifts, it was not possible to separate them by chemical-shift-selective filtration because of the very fast spin-spin relaxation of backbone protons (20-50 ms) in this polysaccharide. Instead, a ID TOCSY-NOESY experiment was performed in which the initial TOCSY transfer from an isolated resonance of H-2c was followed by a selective NOESY transfer from H-lc. The ID TOCSY-NOESY spectrum (fig. 3(c)) clearly separated NOE signals of the H-lc proton from those originating from the H-ld proton and established the linkage Ic —> 6a. [Pg.64]

In any 2D HPLC, it is important to attain certain degree of both the complementarity and the orthogonality between the two separation dimensions [255-257]. The so far most universal approach to 2D polymer HPLC assumes the partial or possibly full suppression of the molar mass effect in the first dimension of the separation so that the complex polymer is separated mainly or even exclusively according to its chemical structure. Selected coupled methods of polymer HPLC are to be applied to this purpose. In the second dimension of separation—it is usually SEC—the fractions from the first dimension are further discriminated according to their molecular size. Exceptionally, SEC can be used as the first dimension to separate complex polymer system according to the molecular size. This approach is applicable when the size of polymer species does not depend or only little depends on their second molecular characteristic, as it is the case of the stereoregular polymers... [Pg.487]


See other pages where Chemical separation Selectivity is mentioned: [Pg.201]    [Pg.31]    [Pg.733]    [Pg.55]    [Pg.188]    [Pg.701]    [Pg.307]    [Pg.471]    [Pg.641]    [Pg.102]    [Pg.62]    [Pg.457]    [Pg.5]    [Pg.284]    [Pg.217]    [Pg.30]    [Pg.56]    [Pg.57]    [Pg.73]    [Pg.86]    [Pg.251]    [Pg.374]    [Pg.388]    [Pg.555]    [Pg.68]    [Pg.875]    [Pg.20]    [Pg.95]    [Pg.234]    [Pg.245]    [Pg.390]    [Pg.397]    [Pg.292]   
See also in sourсe #XX -- [ Pg.274 ]

See also in sourсe #XX -- [ Pg.263 , Pg.452 ]




SEARCH



Chemicals selection

Selectivity separation

Separator selection

Separators, chemical

© 2024 chempedia.info