Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical 45 cyanides

Cyanide Iron Blues. Cyanide iron blue, also known as Pmssian blue, is one of the oldest industrially produced, inorganic pigments. Chemically, cyanide iron blues are based on the [Fe " Fe (CN) ] anion. The charge is balanced by sodium, potassium, or ammonium cations. Modem... [Pg.14]

Cyanide is usually found in compounds (substances formed by joining two or more chemicals). Cyanide can interact with metals and other organic compounds (compounds that include carbon). Sodium cyanide and potassium cyanide are examples of simple cyanide compounds. Cyanide can be produced by certain bacteria, fungi, and algae, and is found in a number of foods and plants. In your body, cyanide can combine with a chemical (hydroxocobalamin) to form vitamin B12 (cyanocobalamin). In certain plant foods, including almonds, millet sprouts, lima beans, soy,... [Pg.13]

Waste Disposal. The general rule for waste disposal is that only dilute inorganic solutions and a few benign organic chemicals such as alcohol and acetic acid can be put down the drain. Materials such as organic solvents, concentrated acids and alkalis, or toxic chemicals (cyanides, arsenic, lead, and heavy-metal componnds) must be put into proper containers, securely capped and labeled, for disposal by the safety office. [Pg.695]

Silver has little tendency to formally lose more than one electron its chemistry is therefore almost entirely restricted to the + 1 oxidation state. Silver itself is resistant to chemical attack, though aqueous cyanide ion slowly attacks it, as does sulphur or a sulphide (to give black Ag S). hence the tarnishing of silver by the atmosphere or other sulphur-containing materials. It dissolves in concentrated nitric acid to give a solution of silver(I) nitrate. AgNOj. [Pg.427]

Other sources of hazard arise from the handling of such chemicals as concentrated acids, alkalis, metallic sodium and bromine, and in working with such extremely poisonous substances as sodium and potassium cyanides. The special precautions to be observed will be indicated, where necessary, in the experiments in which the substances are employed, and will also be supplied by the demonstrator. The exercise of obvious precautions and cautious handling will in most cases reduce the danger to almost negligible proportions. Thus, if concentrated sulphuric acid should be accidentally spilled, it should be immediately washed with a liberal quantity of water or of a solution of a mild alkali. [Pg.206]

This catalyst works in a similar manner to NaBHaCN except that it does not suffer from the same potential toxicity that NaBHaCN does. It is also different in that one can synthesize the damn stuff rather easily in one s own garage, as opposed to NaBHaCN which will require a very complicated and dangerous cyanide generation apparatus as is shown in the Chemicals section of this book. The following is about all Strike has on the making of the catalyst NaBH(OAc)3 [55] ... [Pg.120]

Guar gum [9000-30-0] derived from the seed of a legume (11,16), is used as a flocculant in the filtration of mineral pulps leached with acid or cyanide for the recovery of uranium and gold (16). It is also used as a retention aid, usually in a chemically modified form (14,17). Starch and guar gum are subject to biological degradation in solution, so they are usually sold as dry powders that are dissolved immediately before use. Starch requires heating in most cases to be fully dissolved. [Pg.32]

Hexa.cya.no Complexes. Ferrocyanide [13408-63 ] (hexakiscyanoferrate-(4—)), (Fe(CN) ) , is formed by reaction of iron(II) salts with excess aqueous cyanide. The reaction results in the release of 360 kJ/mol (86 kcal/mol) of heat. The thermodynamic stabiUty of the anion accounts for the success of the original method of synthesis, fusing nitrogenous animal residues (blood, horn, hides, etc) with iron and potassium carbonate. Chemical or electrolytic oxidation of the complex ion affords ferricyanide [13408-62-3] (hexakiscyanoferrate(3—)), [Fe(CN)g] , which has a formation constant that is larger by a factor of 10. However, hexakiscyanoferrate(3—) caimot be prepared by direct reaction of iron(III) and cyanide because significant amounts of iron(III) hydroxide also form. Hexacyanoferrate(4—) is quite inert and is nontoxic. In contrast, hexacyanoferrate(3—) is toxic because it is more labile and cyanide dissociates readily. Both complexes Hberate HCN upon addition of acids. [Pg.434]

Cyanide Wastes. Ozone is employed as a selective oxidant in laboratory-scale synthesis (7) and in commercial-scale production of specialty organic chemicals and intermediates such as fragrances, perfumes (qv), flavors, antibiotics (qv), hormones (qv), and vitamins (qv). In Japan, several metric tons per day (t/d) of piperonal [120-57-0] (3,4-methylenedioxybenzaldehyde) is manufactured in 87% yield via ozonolysis and reduction of isosafrole [93-16-3], Piperonal (or heHotropine [120-57-0]) has a pleasant odor and is used in perfumery. Oleic acid [112-80-1/, CH3(CH2 )7CH—CH(CH2 ). C02H, from tall oil (qv) is ozonated on a t/d scale to produce pelargonic, GgH2yG02H, and azelaic, H02G(GH2)yG02H, acids. Oleic acid also is ozonated in Japan... [Pg.502]

Chemical Hazards. Chemical manufacturers and employees contend with various ha2ards inherent ia productioa of evea commonplace materials. For example, some catalysts used ia the manufacture of polyethylene (see Olefin polymers) ignite when exposed to air or explode if allowed to become too warm the basic ingredient ia fluorocarboa polymers, eg, Tefloa (see Fluorine compounds, organic), can become violently self-reactive if overheated or contaminated with caustic substances (45,46) one of the raw materials for the manufacture of acryflc fibers (see Fibers, acrylic) is the highly toxic hydrogen cyanide (see Cyanides). [Pg.94]

Synthetic chemical approaches to the preparation of carbon-14 labeled materials iavolve a number of basic building blocks prepared from barium [ CJ-carbonate (2). These are carbon [ C]-dioxide [ CJ-acetjlene [U— C]-ben2ene, where U = uniformly labeled [1- and 2- C]-sodium acetate, [ C]-methyl iodide, [ C]-methanol, sodium [ C]-cyanide, and [ CJ-urea. Many compHcated radiotracers are synthesized from these materials. Some examples are [l- C]-8,ll,14-eicosatrienoic acid [3435-80-1] inoxn. [ CJ-carbon dioxide, [ting-U— C]-phenyhsothiocyanate [77590-93-3] ftom [ " CJ-acetjlene, [7- " C]-norepinephrine [18155-53-8] from [l- " C]-acetic acid, [4- " C]-cholesterol [1976-77-8] from [ " CJ-methyl iodide, [l- " C]-glucose [4005-41-8] from sodium [ " C]-cyanide, and [2- " C]-uracil [626-07-3] [27017-27-2] from [ " C]-urea. All syntheses of the basic radioactive building blocks have been described (4). [Pg.438]

Chemical Synthesis. The first synthesis of ascorbic acid was reported ia 1933 by Reichsteia and co-workers (14,39—42) (Fig. 4). Similar, iadependent reports pubHshed by Haworth and co-workers followed shordy after this work (13,43—45). L-Xylose (16) was converted by way of its osazone (17) iato L-xylosone (18), which reacted with hydrogen cyanide forming L-xylonitfile (19). L-Xylonitfile cyclized under mild conditions to the cycloimine of L-ascorbic acid. Hydrolysis of the cycloimine yielded L-ascorbic acid. The yield for the conversion of L-xylosone to L-ascorbic acid was ca 40%. [Pg.14]

Spectrophotometric deterrnination at 550 nm is relatively insensitive and is useful for the deterrnination of vitamin B 2 in high potency products such as premixes. Thin-layer chromatography and open-column chromatography have been appHed to both the direct assay of cobalamins and to the fractionation and removal of interfering substances from sample extracts prior to microbiological or radioassay. Atomic absorption spectrophotometry of cobalt has been proposed for the deterrnination of vitamin B 2 in dry feeds. Chemical methods based on the estimation of cyanide or the presence of 5,6-dimethylben2irnida2ole in the vitamin B 2 molecule have not been widely used. [Pg.115]

In North America, calcium cyanamide is no longer used as fertiliser, but it has limited use in special agricultural appHcations for defoHants, fungicides, herbicides, and as a weed killer. The primary industrial use is as a chemical intermediate for the manufacture of calcium cyanide, hydrogen cyanamide solution, and dicyandiamide. Calcium cyanamide is also used to add nitrogen to steel. [Pg.366]

Chemical Properties. Hydrogen cyanide is a weak acid its ionization constant is of the same magnitude as that of the natural amino acids (qv). Its stmcture is that of a linear, triply bonded molecule, HC=N. [Pg.376]

Hydrogen cyanide adds to an olefinic double bond most readily when an adjacent activating group is present in the molecule, eg, carbonyl or cyano groups. In these cases, a Michael addition proceeds readily under basic catalysis, as with acrylonitrile (qv) to yield succinonitnle [110-61-2], C4H4N2, iu high yield (13). Formation of acrylonitrile by addition across the acetylenic bond can be accompHshed under catalytic conditions (see Acetylene-DERIVED chemicals). [Pg.376]

After removal of the unreacted ammonia and recovery of hydrogen cyanide, the waste gas is essentially all hydrogen suitable for other chemical use. The advantages of the BMA process are the high ammonia and natural gas yields and the usehil hydrogen waste gas, but the high investment and maintenance for the converter is a decided disadvantage. [Pg.379]


See other pages where Chemical 45 cyanides is mentioned: [Pg.276]    [Pg.477]    [Pg.404]    [Pg.222]    [Pg.180]    [Pg.512]    [Pg.518]    [Pg.75]    [Pg.513]    [Pg.298]    [Pg.473]    [Pg.217]    [Pg.252]    [Pg.387]    [Pg.416]    [Pg.11]    [Pg.458]    [Pg.95]    [Pg.359]    [Pg.538]    [Pg.509]    [Pg.114]    [Pg.163]    [Pg.286]    [Pg.286]    [Pg.302]    [Pg.395]    [Pg.535]    [Pg.4]    [Pg.375]    [Pg.375]    [Pg.376]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



© 2024 chempedia.info