Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge interaction force

The Hamiltonian considered above, which connmites with E, involves the electromagnetic forces between the nuclei and electrons. However, there is another force between particles, the weak interaction force, that is not invariant to inversion. The weak charged current mteraction force is responsible for the beta decay of nuclei, and the related weak neutral current interaction force has an effect in atomic and molecular systems. If we include this force between the nuclei and electrons in the molecular Hamiltonian (as we should because of electroweak unification) then the Hamiltonian will not conuuiite with , and states of opposite parity will be mixed. However, the effect of the weak neutral current interaction force is mcredibly small (and it is a very short range force), although its effect has been detected in extremely precise experiments on atoms (see, for... [Pg.170]

Electrostatic terms other than the simple charge interactions above are commonly included in molecular mechanics calculations. particularly dipole-dipole interactions. More recently, second-order electrostatic interactions like those describing polarizability have been added to some force fields. [Pg.179]

E causes a particle of charge q to experience a force and hence a displacement. Both the force and the displacement are proportional to E therefore the energy of the field-charge interaction-the product of the force and the displacement-is proportional to E. ... [Pg.665]

Both of the above approaches rely in most cases on classical ideas that picture the atoms and molecules in the system interacting via ordinary electrical and steric forces. These interactions between the species are expressed in terms of force fields, i.e., sets of mathematical equations that describe the attractions and repulsions between the atomic charges, the forces needed to stretch or compress the chemical bonds, repulsions between the atoms due to then-excluded volumes, etc. A variety of different force fields have been developed by different workers to represent the forces present in chemical systems, and although these differ in their details, they generally tend to include the same aspects of the molecular interactions. Some are directed more specifically at the forces important for, say, protein structure, while others focus more on features important in liquids. With time more and more sophisticated force fields are continually being introduced to include additional aspects of the interatomic interactions, e.g., polarizations of the atomic charge clouds and more subtle effects associated with quantum chemical effects. Naturally, inclusion of these additional features requires greater computational effort, so that a compromise between sophistication and practicality is required. [Pg.6]

Ion-pair formation (or the formation of triplets, etc.) is a very simple kind of interaction between ions of opposite charge. As the electrolyte concentration increases and the mean distance between ions decreases, electrostatic forces are no longer the only interaction forces. Aggregates within which the ions are held together by chemical forces have certain special features (i.e., shorter interatomic distances and a higher degree of desolvation than found in ion pairs) and can form a common solvation sheath instead of the individual sheaths. These aggregates are seen distinctly in spectra, and in a number of cases their concentrations can be measured spectroscopically. [Pg.125]

In the same year as that of the proposal of the frontier-electron theory, the theory of charge-transfer force was developed by Mulliken with regard to the molecular complex formation between an electron donor and an acceptor 47>. In this connection he proposed the "overlap and orientation principle 48> in which only the overlap interaction between the HO MO of the donor and the LU MO of the acceptor is considered. [Pg.11]

Quite independently, of these fragmentary remarks, a distinctive role of HO (and later LU and SO, too) in unsaturated molecules was pointed out 43> in a general form and with substantiality (cf. Chap. 2). With respect to the molecular complex formation, the theory of charge-transfer force was proposed 47>. A clue tograsp the importance of HO—LU interaction was thus brought to light simultaneously both from the side of ionic reaction and from the side of molecular complex formation. [Pg.43]

We note that if all electrostatic interactions between the solute and solvent are annulled, for example, by eliminating all solute partial charges in force field models, the potential distribution formula [Eq. (5)] sensibly describes the hydration of that hypothetical solute... [Pg.317]

As an example, consider assessment of classic electrostatic solute-solvent interactions associated with solute partial charges in force-field models. The contribution of electrostatic interactions is then isolated as... [Pg.332]

Fig. 10.2 (A) Cross-section SEM micrograph of the hybrid membrane containing the receptor 1, (B) membrane transport concentration profiles and (C) molecular recognition principles of acidic I and zwitterionic II L-phenylalanine in the heteropoly-siloxane material membrane (1-hydrogen bonding, 2-charge interaction, 3-Van der Waals forces) [29]. Fig. 10.2 (A) Cross-section SEM micrograph of the hybrid membrane containing the receptor 1, (B) membrane transport concentration profiles and (C) molecular recognition principles of acidic I and zwitterionic II L-phenylalanine in the heteropoly-siloxane material membrane (1-hydrogen bonding, 2-charge interaction, 3-Van der Waals forces) [29].
Let us suppose provisionally that we have a system of N point charges interacting through Coulombic forces ... [Pg.187]

The charge delocalization or the polarizability difference explains the selectivity behaviour in cases of high polarizability differences (complex versus aqueous metal ion) or in a homologous series of ions (either inorganic cations or ammonium cations). The smaller hydration status of all types of interlamellarly adsorbed cations is ascribed to the mutual stabilization by charge delocalization over the planar oxygens and exchangeable cations and is caused by the electrostatic interaction forces. [Pg.274]

When two similarly charged colloid particles, under the influence of the EDL, come close to each other, they will begin to interact. The potentials will detect one another, and this will lead to various consequences. The charged molecules or particles will be under both van der Waals and electrostatic interaction forces. The van der Waals forces, which operate at a short distance between particles, will give rise to strong attraction forces. The potential of the mean force between colloid particle in an electrolyte solution plays a central role in the phase behavior and the kinetics of agglomeration in colloidal dispersions. This kind of investigation is important in these various industries ... [Pg.144]

Studies on fundamental interactions between surfaces extend across physics, chemistry, materials science, and a variety of other disciplines. With a force sensitivity on the order of a few pico-Newtons, AFMs are excellent tools for probing these fundamental force interactions. Force measurements in water revealed the benefits of AFM imaging in this environment due to the lower tip-sample forces. Some of the most interesting force measurements have also been performed with samples under liquids where the environment can be quickly changed to adjust the concentration of various chemical components. In liquids, electrostatic forces between dissolved ions and other charged groups play an important role in determining the forces sensed by an AFM cantilever. [Pg.136]


See other pages where Charge interaction force is mentioned: [Pg.11]    [Pg.77]    [Pg.11]    [Pg.77]    [Pg.806]    [Pg.213]    [Pg.179]    [Pg.529]    [Pg.98]    [Pg.277]    [Pg.220]    [Pg.175]    [Pg.62]    [Pg.59]    [Pg.353]    [Pg.8]    [Pg.288]    [Pg.88]    [Pg.237]    [Pg.46]    [Pg.42]    [Pg.100]    [Pg.430]    [Pg.252]    [Pg.361]    [Pg.74]    [Pg.5]    [Pg.244]    [Pg.216]    [Pg.157]    [Pg.155]    [Pg.86]    [Pg.278]    [Pg.88]    [Pg.141]    [Pg.145]    [Pg.246]    [Pg.83]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Electrostatic interactions forces between charged surfaces

Forces interaction between particular point charge

Interaction force

© 2024 chempedia.info