Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen Planar

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

The structural features especially the very polar nature of the carbonyl group point clearly to the kind of chemistry we will see for aldehydes and ketones in this chapter The partially positive carbon of C=0 has carbocation character and is electrophilic The planar arrangement of its bonds make this carbon relatively uncrowded and susceptible to attack by nucleophiles Oxygen is partially negative and weakly basic... [Pg.708]

FIGURE 18 6 Acrolein w (H2C=CHCH=0) is a planar molecule Oxygen and each carbon IS sp hybridized and each contributes one elec tron to a conjugated tt elec tron system analogous to that of 1 3 butadiene... [Pg.776]

The structural features of the carboxyl group are most apparent m formic acid Formic acid IS planar with one of its carbon-oxygen bonds shorter than the other and with bond angles at carbon close to 120°... [Pg.793]

The importance of steric effects in determining the oxidation state of the product can be illustrated by a thioether linkage, eg (57). If a methyl group is forced to be adjacent to the sulfur bond, the planarity required for efficient electron donation by unshared electrons is prevented and oxidation is not observed (48). Similar chemistry is observed in the addition of organic nitrogen and oxygen nucleophiles as well as inorganic anions. [Pg.410]

An X-ray structure of 5yn-triepoxide (38) (74AG(E)539) shows that the cyclohexane ring is planar, with the three oxygens and sbt hydrogens lying in parallel planes 1.19 and 0.42 A respectively from the carbon plane. With all oxygens on one face , (38) forms a crystalline 2 1 complex with potassium iodide. [Pg.189]

The orientational structure of water near a metal surface has obvious consequences for the electrostatic potential across an interface, since any orientational anisotropy creates an electric field that interacts with the metal electrons. Hydrogen bonds are formed mainly within the adsorbate layer but also between the adsorbate and the second layer. Fig. 3 already shows quite clearly that the requirements of hydrogen bond maximization and minimization of interfacial dipoles lead to preferentially planar orientations. On the metal surface, this behavior is modified because of the anisotropy of the water/metal interactions which favors adsorption with the oxygen end towards the metal phase. [Pg.362]

Figure 5.4 The molecular structure of basic beryllium acetate showing (a) the regular tetrahedral arrangement of 4 Be about the central oxygen and the octahedral arrangement of the 6 bridging acetate groups, and (b) the detailed dimensions of one of the six non-planar 6-membeted heterocycles. (The Be atoms are 24 pm above and below the plane of the acetate group.) The 2 oxygen atoms in each acetate group are equivalent. The central Be-O distances (166.6 pm) are very close to that in BeO itself (165 pm). Figure 5.4 The molecular structure of basic beryllium acetate showing (a) the regular tetrahedral arrangement of 4 Be about the central oxygen and the octahedral arrangement of the 6 bridging acetate groups, and (b) the detailed dimensions of one of the six non-planar 6-membeted heterocycles. (The Be atoms are 24 pm above and below the plane of the acetate group.) The 2 oxygen atoms in each acetate group are equivalent. The central Be-O distances (166.6 pm) are very close to that in BeO itself (165 pm).
The product is a black-brown solid that is very sensitive to oxygen. The same cation can be obtained by oxidation of S4N4 with AsFs and is unusual in being the only sulfur-nitrogen (paramagnetic) radical that has been obtained as a stable crystalline salt. X-ray diffraction analysis shows the structure to be a planar 5-membered ring with approximate... [Pg.730]


See other pages where Oxygen Planar is mentioned: [Pg.63]    [Pg.276]    [Pg.2616]    [Pg.152]    [Pg.251]    [Pg.273]    [Pg.132]    [Pg.181]    [Pg.447]    [Pg.73]    [Pg.120]    [Pg.327]    [Pg.530]    [Pg.205]    [Pg.190]    [Pg.360]    [Pg.218]    [Pg.399]    [Pg.4]    [Pg.5]    [Pg.209]    [Pg.424]    [Pg.241]    [Pg.676]    [Pg.1308]    [Pg.166]    [Pg.108]    [Pg.161]    [Pg.332]    [Pg.688]    [Pg.87]    [Pg.145]    [Pg.206]    [Pg.250]    [Pg.455]    [Pg.612]    [Pg.615]    [Pg.778]    [Pg.907]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



© 2024 chempedia.info