Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization techniques XANES

Nowadays there is a general consensus that the Ti(IV) atoms are incorporated as isolated centers into the framework and are substituting Si atoms in the tetrahedral positions forming [Ti04] units. The model of isomorphous substitution has been put forward on the basis of several independent characterization techniques, namely X-ray [21-23] or neutron [24-26] diffraction studies, IR (Raman) [52-57], UV-Vis [38,54,58], EXAFS, and XANES [52, 58-62] spectroscopies. [Pg.42]

XPS has typically been regarded primarily as a surface characterization technique. Indeed, angle-resolved XPS studies can be very informative in revealing the surface structure of solids, as demonstrated for the oxidation of Hf(Sio.sAso.5)As. However, with proper sample preparation, the electronic structure of the bulk solid can be obtained. A useful adjunct to XPS is X-ray absorption spectroscopy, which probes the bulk of the solid. If trends in the XPS BEs parallel those in absorption energies, then we can be reasonably confident that they represent the intrinsic properties of the solid. Features in XANES spectra such as pre-edge and absorption edge intensities can also provide qualitative information about the occupation of electronic states. [Pg.139]

This review will give a short introduction to the EXAFS and Ap XANES techniques and then focus on various investigations in PEM fuel cells. The advantages and limitations of XAS in fuel cell research will be compared to other characterization techniques, and then investigations of specific Pt-Ru anode catalysts presented. In the light of these recent results, the suitability of the XAS approach to reveal fundamental steps in the reaction mechanisms will be discussed. [Pg.163]

Different characterization techniques are used to get an insight into the location of transition metal ions in an aluminophosphate framework. Generally, the data on the cation location are collected with difficulty since the metal concentration is low. In this regard, it is necessary to use more than one method if a reliable conclusion is to be reached (ie, the simultaneous application of several physical techniques is recommended). The following characterization methods are commonly applied diffuse reflectance UV-vis spectroscopy (DRS), electron spin resonance (ESR), electron spin echo modulation (ESEM), infrared (IR), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopies, as well as the nuclear magnetic resonance spectroscopy (NMR), Mossbauer spectroscopy and the X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption spectroscopy for fine structure (EXAFS) (167,168) and references therein). [Pg.1623]

Abstract Molecular spectroscopy is one of the most important means to characterize the various species in solid, hquid and gaseous elemental sulfur. In this chapter the vibrational, UV-Vis and mass spectra of sulfur molecules with between 2 and 20 atoms are critically reviewed together with the spectra of liquid sulfur and of solid allotropes including polymeric and high-pressure phases. In particular, low temperature Raman spectroscopy is a suitable technique to identify single species in mixtures. In mass spectra cluster cations with up to 56 atoms have been observed but fragmentation processes cause serious difficulties. The UV-Vis spectra of S4 are reassigned. The modern XANES spectroscopy has just started to be applied to sulfur allotropes and other sulfur compounds. [Pg.31]

Zn and N K-edge XANES have been used to distinguish the coordination geometries in (1,2-ethanediylidene)-bis(5 -methylhydrazonecarbodithionate) zinc complexes (109). The technique distinguished between tetrahedral species, square pyramidal dimers, and square pyramidal monomers, formed when pyridine was present. These studies were in conjunction with spectroscopic characterization and X-ray single-crystal data where possible.53 The results demonstrated the value of this technique when single crystals could not be obtained. [Pg.1226]

Although a number of secondary minerals have been predicted to form in weathered CCB materials, few have been positively identified by physical characterization methods. Secondary phases in CCB materials may be difficult or impossible to characterize due to their low abundance and small particle size. Conventional mineral identification methods such as X-ray diffraction (XRD) analysis fail to identify secondary phases that are less than 1-5% by weight of the CCB or are X-ray amorphous. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), coupled with energy dispersive spectroscopy (EDS), can often identify phases not seen by XRD. Additional analytical methods used to characterize trace secondary phases include infrared (IR) spectroscopy, electron microprobe (EMP) analysis, differential thermal analysis (DTA), and various synchrotron radiation techniques (e.g., micro-XRD, X-ray absorption near-eidge spectroscopy [XANES], X-ray absorption fine-structure [XAFSJ). [Pg.642]

Techniques of microscopic XRF ( j,-XRF) developed in the last 20 years provide 2D images and elemental maps of each element present in the target material. Portable/in situ p-XRF, j,-XRF spectrometers synchrotron-based ( -SRXRF) and micro-x-ray absorption spectroscopy/micro-x-ray absorption near-edge structure spectroscopy (XAS/ J,-XANES) have improved the mineralogical characterization, as well as the elemental and chemical imaging of samples at the submicrometer scale [61]. [Pg.27]

In order to identify the chemical nature of phosphorus and sulfur in complex matrices such as antiwear tribofilms, it is essential to compare the spectra of films with different model compounds in which the local chemical environments of phosphorus and sulfur are known. The high resolution of the technique allows characterization of the chemical nature of phosphorus and sulfur in the tribofilm. Investigators have shown that the chain length of polyphosphate is related to the length of alkyl groups in ZDDP. By comparison of the L-edge XANES spectra of the tribofilms with the spectra of model compounds with known structures, it has been possible to speciate the chemical nature of phosphorus and sulfur in the antiwear tribofilms. [Pg.130]

Considerable progress has been made in studying tribofilms in the last decade. A number of important surface and thin film techniques have been developed in recent years, which are contributing to a better understanding of at least some tribochemical processes of boundary lubrication. In recent years, X-ray absorption near edge structure XANES spectroscopy, a powerful technique for tribofilm characterization, was used to identify a layered structure (surface and bulk) of tribofilms. The chemistry of tribofilms generated by the combination of zinc dialkyldithiophosphate (ZDDP) and molybdenum dialkyldithiocarbamate (MoDTC) has been examined. [Pg.374]

XAS, and particularly its application to catalysis, has been the subject of several previous reviews and books. In 1988, Koningsberger and Prins published the book "X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES" (Koningsberger and Prins, 1988). In this monograph there is a thorough description of the technique together with a chapter on its application to catalysis. Iwasawa in 1996 published "XAFS for catalysts and surfaces" (Iwasawa, 1996), which focused solely on XAFS spectroscopy as applied to catalyst characterization. This volume includes a chapter by Bazin, Dexpert, and Lynch about measurements of catalysts in reactive atmospheres, and several other chapters allude to examples of such characterization. Recently a book entitled In situ Spectroscopy of Catalysts" (Weckhuysen, 2004) was published that contains three chapters focused on XAFS of catalysts in reactive atmospheres one on XANES, one on EXAFS, and one on time-resolved XAFS. [Pg.345]

Although the experiments referred to here demonstrate the wealth of kinetics and structural data that can be obtained from TR-XAFS data, application of XAFS spectroscopy combined with complementary techniques provides unique and even more detailed information. This statement refers to the most elegant way of using XAFS spectroscopy simultaneously with other methods (e.g., XRD Clausen, 1998 Clausen et al., 1993 Dent et al., 1995 Thomas et al., 1995), and it also refers to XAFS experiments complemented by experiments carried out under similar experimental conditions (e.g., laboratory techniques such as XRD, Raman spectroscopy, TG/DTA). More often than not, a detailed XAFS analysis is possible only when all additional data (characterizing phases, metal valences, and structure) representing the catalyst are available. Furthermore, the analysis of TR-XAFS data should aim at extracting as much information from the XANES part and the EXAFS part of a XAFS spectrum as possible. [Pg.445]


See other pages where Characterization techniques XANES is mentioned: [Pg.43]    [Pg.34]    [Pg.177]    [Pg.172]    [Pg.452]    [Pg.212]    [Pg.197]    [Pg.809]    [Pg.25]    [Pg.225]    [Pg.110]    [Pg.281]    [Pg.27]    [Pg.614]    [Pg.384]    [Pg.6]    [Pg.253]    [Pg.319]    [Pg.285]    [Pg.336]    [Pg.304]    [Pg.397]    [Pg.130]    [Pg.516]    [Pg.22]    [Pg.224]    [Pg.44]    [Pg.122]    [Pg.130]    [Pg.133]    [Pg.558]    [Pg.1]    [Pg.13]    [Pg.482]    [Pg.257]    [Pg.278]    [Pg.304]    [Pg.6392]   
See also in sourсe #XX -- [ Pg.9 , Pg.158 , Pg.159 , Pg.160 , Pg.538 , Pg.539 , Pg.541 , Pg.542 , Pg.543 ]

See also in sourсe #XX -- [ Pg.9 , Pg.158 , Pg.159 , Pg.160 , Pg.538 , Pg.539 , Pg.541 , Pg.542 , Pg.543 ]




SEARCH



Characterization XANES

Characterization techniques

XANES

© 2024 chempedia.info