Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular abstractions

Williams83 has recently considered the possibility of ion molecule reactions in alcohols, ketones, ethers, and esters. He postulates that the primary reactions of the parent ion are the inter- or intra-molecular abstraction of a hydrogen atom and the formation of a x-bond between oxygen and the adjacent carbon atom after homolytic scission of a bond to that adjacent carbon atom. After examining some of the liquid phase data on the radiolysis of these oxygen compounds it was concluded that such ion molecule reactions may be of importance in these systems also. [Pg.214]

Gutman and co-workers argued strongly against any contribution from a direct molecular abstraction reaction (5Ae) and proposed a coupled mechanism which accounted for the pressure effect, negative temperature coefficient below 500 K and the unique formation of C2H4 above this temperature. [Pg.53]

From both these examples is clear the advantage of using a search with successive molecular abstractions the number of metamolecules needed to be evaluated is far smaller than the number of individual molecules. [Pg.280]

A special case of intra-molecular abstraction can occur when the H atom is removed from the same chain as the abstracting radical. This process (called "backbiting") may occur where long chain polymers take up configurations which bring labile H atoms on the polymer chain, into close proximity with the radical at the chain end. This process will result in the termination of the growing chain and give rise to a C=C bond at the position on the polymer chain where the abstraction occurred. [Pg.8]

Atom abstraction occurs when a dissociation reaction occurs on a surface in which one of the dissociation products sticks to the surface, while another is emitted. If the chemisorption reaction is particularly exothennic, the excess energy generated by chemical bond fomiation can be chaimelled into the kinetic energy of the desorbed dissociation fragment. An example of atom abstraction involves the reaction of molecular halogens with Si surfaces [27, 28]. In this case, one halogen atom chemisorbs while the other atom is ejected from the surface. [Pg.295]

The conical parameters describe the topography of the conical intersection. The directions for g, h, and h relate the abstract x, y, z directions to actual molecular... [Pg.469]

Abstract. Molecular dynamics (MD) simulations of proteins provide descriptions of atomic motions, which allow to relate observable properties of proteins to microscopic processes. Unfortunately, such MD simulations require an enormous amount of computer time and, therefore, are limited to time scales of nanoseconds. We describe first a fast multiple time step structure adapted multipole method (FA-MUSAMM) to speed up the evaluation of the computationally most demanding Coulomb interactions in solvated protein models, secondly an application of this method aiming at a microscopic understanding of single molecule atomic force microscopy experiments, and, thirdly, a new method to predict slow conformational motions at microsecond time scales. [Pg.78]

Abstract. The overall Hamiltonian structure of the Quantum-Classical Molecular Dynamics model makes - analogously to classical molecular dynamics - symplectic integration schemes the methods of choice for long-term simulations. This has already been demonstrated by the symplectic PICKABACK method [19]. However, this method requires a relatively small step-size due to the high-frequency quantum modes. Therefore, following related ideas from classical molecular dynamics, we investigate symplectic multiple-time-stepping methods and indicate various possibilities to overcome the step-size limitation of PICKABACK. [Pg.412]

Abstract. We present novel time integration schemes for Newtonian dynamics whose fastest oscillations are nearly harmonic, for constrained Newtonian dynamics including the Car-Parrinello equations of ab initio molecular dynamics, and for mixed quantum-classical molecular dynamics. The methods attain favorable properties by using matrix-function vector products which are computed via Lanczos method. This permits to take longer time steps than in standard integrators. [Pg.421]

Abstract. This paper presents results from quantum molecular dynamics Simula tions applied to catalytic reactions, focusing on ethylene polymerization by metallocene catalysts. The entire reaction path could be monitored, showing the full molecular dynamics of the reaction. Detailed information on, e.g., the importance of the so-called agostic interaction could be obtained. Also presented are results of static simulations of the Car-Parrinello type, applied to orthorhombic crystalline polyethylene. These simulations for the first time led to a first principles value for the ultimate Young s modulus of a synthetic polymer with demonstrated basis set convergence, taking into account the full three-dimensional structure of the crystal. [Pg.433]

The systematic lUPAC nomenclature of compounds tries to characterize compounds by a unique name. The names are quite often not as compact as the trivial names, which are short and simple to memorize. In fact, the lUPAC name can be quite long and cumbersome. This is one reason why trivial names are still heavily used today. The basic aim of the lUPAC nomenclature is to describe particular parts of the structure (fi agments) in a systematic manner, with special expressions from a vocabulary of terms. Therefore, the systematic nomenclature can be, and is, used in database systems such as the Chemical Abstracts Service (see Section 5.4) as index for chemical structures. However, this notation does not directly allow the extraction of additional information about the molecule, such as bond orders or molecular weight. [Pg.21]

The WLN was applied to indexing the Chemical Structure Index (CSI) at the Institute for Scientific Information (ISI) [13] and the Ituiex Chemicus Registry System (ICRS) as well as the Crossbow System of Imperial Chemical Industries (ICl). With the introduction of connection tables in the Chemical Abstracts Service (CAS) in 1965 and the advent of molecular editors in the 1970s, which directly produced connection tables, the WLN lost its importance. [Pg.25]

The next and very important step is to make a decision about the descriptors we shall use to represent the molecular structures. In general, modeling means assignment of an abstract mathematical object to a real-world physical system and subsequent revelation of some relationship between the characteristics of the object on the one side, and the properties of the system on the other. [Pg.205]

In studying molecular orbital theory, it is difficult to avoid the question of how real orbitals are. Are they mere mathematical abstractions The question of reality in quantum mechanics has a long and contentious history that we shall not pretend to settle here but Koopmans s theorem and photoelectron spectra must certainly be taken into account by anyone who does. [Pg.323]

Rearrangement to an open chain imine (165) provides an intermediate whose acidity toward lithiomethylthiazole (162) is rather pronounced. Proton abstraction by 162 gives the dilithio intermediate (166) and regenerates 2-methylthiazole for further reaction. During the final hydrolysis, 166 affords the dimer (167) that could be isolated by molecular distillation (433). A proof in favor of this mechanism is that when a large excess of butyllithium is added to (161) at -78°C and the solution is allowed to warm to room temperature, the deuterolysis affords only dideuterated thiazole (170), with no evidence of any dimeric product. Under these conditions almost complete dianion formation results (169), and the concentration of nonmetalated thiazole is nil. (Scheme 79). This dimerization bears some similitude with the formation of 2-methylthia-zolium anhydrobase dealt with in Chapter DC. Meyers could confirm the independence of the formation of the benzyl-type (172) and the aryl-type... [Pg.122]

Several relationships aid in deducing the empirical formula of the parent ion (and also molecular fragments). From the empirical formula hypothetical molecular structures can be proposed, using the entries in the formula indices of Beilstein and Chemical Abstracts. [Pg.812]

Typical Cl processes in which neutral sample molecules (M) react with NH to give either (a) a protonated ion [M + HJ or (b) an adduct ion [M + NHJ+ the quasi-molecular ions are respectively 1 and 18 mass units greater than the true mass (M). In process (c), reagent ions (CjHf) abstract hydrogen, giving a quasi-molecular ion that is 1 mass unit less than M. [Pg.4]


See other pages where Molecular abstractions is mentioned: [Pg.275]    [Pg.278]    [Pg.221]    [Pg.227]    [Pg.169]    [Pg.25]    [Pg.103]    [Pg.275]    [Pg.278]    [Pg.221]    [Pg.227]    [Pg.169]    [Pg.25]    [Pg.103]    [Pg.4]    [Pg.237]    [Pg.3]    [Pg.39]    [Pg.98]    [Pg.129]    [Pg.163]    [Pg.197]    [Pg.281]    [Pg.297]    [Pg.332]    [Pg.349]    [Pg.365]    [Pg.380]    [Pg.472]    [Pg.483]    [Pg.390]    [Pg.21]    [Pg.663]    [Pg.1008]    [Pg.3]    [Pg.5]    [Pg.506]   


SEARCH



© 2024 chempedia.info