Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cesium catalysts

Propionic acid is accessible through the Hquid-phase carbonylation of ethylene over a nickel carbonyl catalyst (104), or via ethylene and formic acid over an iridium catalyst (105). Condensation of propionic acid with formaldehyde over a supported cesium catalyst gives MAA directiy with conversions of 30—40% and selectivities of 80—90% (106,107). Catalyst lifetime can be extended by adding low levels (several ppm) of cesium to the feed stream (108). [Pg.253]

Use Source of cesium, catalyst, fluxes, welding materials, ion propulsion, thermocouple units. [Pg.1006]

Single absorption + cesium catalyst in the last bed AUSCSA <2,000 <5... [Pg.29]

Operation of the cesium catalyst at a much lower inlet temperature than the potassium-promoted catalyst achieved a sulfur dioxide conversion in the range 99.2-99.6%. This was comparable to a double-absorption plant but with a lower capital cost apart from increased heat exchange capacity and a slightly more expensive catalyst. It allows producers to use existing four-bed single-absorption units and meet environmental demands without the capital expense of a new plant. [Pg.39]

Carbonyl fluoride, COF2, and oxygen difluoride react in the presence of cesium fluoride catalyst to give bis(trifluorylmethyl)trioxide [1718-18-9] CF OOOCF (31). CF OOF has been isolated from the reaction in the presence of excess OF2 (32). [Pg.220]

Halex rates can also be increased by phase-transfer catalysts (PTC) with widely varying stmctures quaternary ammonium salts (51—53) 18-crown-6-ether (54) pytidinium salts (55) quaternary phosphonium salts (56) and poly(ethylene glycol)s (57). Catalytic quantities of cesium duoride also enhance Halex reactions (58). [Pg.319]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

Ethylene oxide is produced in large, multitubular reactors cooled by pressurized boiling Hquids, eg, kerosene and water. Up to 100 metric tons of catalyst may be used in a plant. Typical feed stream contains about 30% ethylene, 7—9% oxygen, 5—7% carbon dioxide the balance is diluent plus 2—5 ppmw of a halogenated moderator. Typical reactor temperatures are in the range 230—300°C. Most producers use newer versions of the Shell cesium-promoted silver on alumina catalyst developed in the mid-1970s. [Pg.202]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

Silver alone on a support does not give rise to a good catalyst (150). However, addition of minor amounts of promoter enhance the activity and the selectivity of the catalyst, and improve its long-term stabiHty. Excess addition lowers the catalyst performance (151,152). Promoter formulations have been studied extensively in the chemical industry. The most commonly used promoters are alkaline-earth metals, such as calcium or barium, and alkaH metals such as cesium, mbidium, or potassium (153). Using these metals in conjunction with various counter anions, selectivities as high as 82—87% were reported. Precise information on commercial catalyst promoter formulations is proprietary (154—156). [Pg.458]

Fluoroncytrifluoromethane is prepared in a process that uses cesium fluoride as a catalyst for the reaction between fluorine and carbon monoxide [/ij (equation 1) Bisfluoroxydifluoromethane is prepared in a similar manner from carbon dioxide [id], Fluoroxymethane was prepared recently [14]... [Pg.134]

Rearrangement of fluorine with concomitant ring opening takes place in fluorinated epoxides Hexafluoroacetone can be prepared easily from perfluo-ropropylene oxide by isomerization with a fluorinated catalyst like alumina pre treated with hydrogen fluoride [26, 27, 28] In ring-opening reactions of epoxides, the distribution of products, ketone versus acyl fluoride, depends on the catalyst [29] (equation 7) When cesium, potassium, or silver fluoride are used as catalysts, dimenc products also are formed [29]... [Pg.914]

The catalyst (spheres or rings with a diameter of 3-10 mm) contains 7-20% silver on high-purity a-AI203 having a surface of only <2 m2/g. Cesium or another alkali or earth alkali salt is added in an amount of 100-500 mg/kg catalyst for upgrading the selectivity. However, small amounts of halogen compounds, e.g., dichloroethane, are added to the ethylene/oxygen mixture to inhibit the total oxidation of the ethylene. [Pg.33]

M.V. Badani, and M.A. Vannice, Effects of cesium and chlorine on oxygen adsorption on promoted Ag/a AI203 catalysts, Appl. Catal. A 204, 129-142 (2000). [Pg.88]

This reaction is similar to 13-1 and, like that one, generally requires activated substrates. With unactivated substrates, side reactions predominate, though aryl methyl ethers have been prepared from unactivated chlorides by treatment with MeO in HMPA. This reaction gives better yields than 13-1 and is used more often. A good solvent is liquid ammonia. The compound NaOMe reacted with o- and p-fluoronitrobenzenes 10 times faster in NH3 at — 70°C than in MeOH. Phase-transfer catalysis has also been used. The reaction of 4-iodotoluene and 3,4-dimethylphenol, in the presence of a copper catalyst and cesium carbonate, gave the diaryl ether (Ar—O—Ar ). Alcohols were coupled with aryl halides in the presence of palladium catalysts to give the Ar—O—R ether. Nickel catalysts have also been used. ... [Pg.862]

Base catalysis is another area which has received a recent stimulus from developments in materials science and microporous solids in particular. The Merk company, for example, has developed a basic catalyst by supporting clusters of cesium oxide in a zeolite matrix [13]. This catalyst system has been developed to manufacture 4-methylthiazole from acetone and methylamine. [Pg.6]

An iron phosphate catalyst with a P/Fe atomic ratio of 1.2 used in this study was prepared according to the procedures described in the previous studies [6-8]. On the other hand, a V-P oxide catalyst with a P/V atomic ratio of 1.06 and pumice supported 12-molybdophosphoric acid (H3PM012O40) and its cesium salt (CS2HPM012O40) catalysts were the same as used in a previous study [9]. Pumice supported W03-based mixed oxide catalysts were the same as used in a previous study [10]. [Pg.202]

GP 2] [R 3a] A Shell Series catalyst was measured in a fixed-bed configuration and deposited in micro channels electrophoretically (20 vol.-% ethylene, 80 vol.-% oxygen 0.3 MPa 230 °C) [101]. The selectivity was lower in the micro channels (51%) than in the fixed bed (57%) at a conversion of 17%. In a further investigation, a sputtered silver catalyst (cesium promoted) was better than both systems (68%) at higher conversion (25%). [Pg.307]


See other pages where Cesium catalysts is mentioned: [Pg.827]    [Pg.169]    [Pg.169]    [Pg.827]    [Pg.169]    [Pg.169]    [Pg.184]    [Pg.165]    [Pg.298]    [Pg.500]    [Pg.185]    [Pg.190]    [Pg.85]    [Pg.374]    [Pg.378]    [Pg.179]    [Pg.17]    [Pg.19]    [Pg.488]    [Pg.318]    [Pg.318]    [Pg.320]    [Pg.324]    [Pg.100]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Catalyst, SO2 oxidation cesium affects

Cesium fluoride catalyst

Cesium in catalyst

Cesium in catalyst SO2 oxidation efficiency

Cesium in catalyst avoids high temperature degradation

Cesium in catalyst best bed for maximum

Cesium in catalyst efficiency

Cesium in catalyst gives low activation temperature

Cesium in catalyst improves SO2 oxidation

Cesium in catalyst phase diagram

Cesium in catalyst temperature

Cesium in catalyst temperature degradation

Cesium, metal catalyst promotion

Cesium-Promoted Catalysts

Cesium-activated catalyst

Double contact acidmaking cesium catalyst placement

SO2 oxidation efficiency cesium catalyst effect

© 2024 chempedia.info