Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Central-field systems

Show that the operator U (Problem 1.4) (and similarly for L, L,) commutes with the potential energy function V r) for a central-field system. [Hint Think of V r) as a function of i = x + y + and the operators as differential operators.]... [Pg.21]

The orbital angular-momentum operators are of great importance in any central-field system other operators with formally similar properties are the spin operators (used extensively in Chapters 4 and 11), and it is therefore useful to collect the properties that characterize any kind of angular momentum. If the operators associated with the components are denoted by HKy and then... [Pg.527]

In conclusion, the wave function for a one-electron central-field system (6.3.1) may be written as a product of a radial function and a spherical-harmonic angular function... [Pg.206]

To operate the MPI or LPI equipment at stable and reprodncable inspection conditions modern units are equipped with a monitoring and control system called "Quality Assurance Package" (termed QAP). The QAP System is ba.sed on an industrial PC with a bus system and field sensors. It ensures that process parameters important for the reproducability of the MPI or LPI are controlled an held between defined limits by a central computer system. It can be adapted to any old system, as well as integrated into new systems. [Pg.628]

The present chapter will address the following issues (1) a very brief overview on the properties of the different types of Cl -channels in the various mammalian cells (2) a short summary on what is known of Cl channels on a molecular basis (3) a discussion of pharmacological agents blocking the various Cl -channels and (4) a specific section dealing with the regulation of epithelial and maybe other Cl -channels. This entire area has been reviewed rather extensively in the recent past. A large number of references will be provided in order to keep this text concise. The entire field of Cl -channels in the central nervous system will only be touched upon to compare these channels to the Cl -channels in apolar cells and epithelia. [Pg.274]

In the 5 d series however it is possible to derive additional information bearing upon the problem of the relative extent of central field and symmetry restricted covalency. For many 5 d complexes reasonable estimates of the effective spin-orbit coupling constant can be derived from the spectra, and thence the relativistic ratio, / (= complex/ gas). When both f) and / are known for a given system, Jorgensen (74) has suggested how estimates of both covalencv contributions may be made. [Pg.148]

Another instructive example of the relevance of ambient stimuli to the nature of the effect of serotonergic manipulations on locomotor activity is provided by Brody s (27) study of PCPA. He monitored the locomotion of vehicle- and PCPA-treated rats in an open field to which the animals had been previously familiarized. Animals were tested either with or without additional stimulation in the form of flashing lights and 90 dB(A) noise bursts. Without stimulation, PCPA-treated rats were less active than controls with stimulation, PCPA-treated rats were more active. The results of these and other such studies indicate that the central serotonergic systems may not directly modulate the level of locomotor activity per se, but they may profoundly influence locomotor activity by virtue of their effects on the sensory responsivity of the animal to a wide variety of environmental stimuli. [Pg.31]

In this rapidly evolving field, the detection of PDE enzymes in the central nervous system (CNS) has stimulated interest in exploring potential applications of PDE inhibitors for treating CNS disorders such as Alzheimer s disease and other cognitive malfunctions, depression, anxiety, and schizophrenia. This review will focus on these therapeutic opportunities as well as new developments in the medicinal chemistry and biology associated with selected members of the PDE family, in particular PDEs 2, 4, 9, and 10. There have been a number of other reviews in this field in the past year that have covered selected individual PDE enzymes and potential pharmacologic applications of PDE inhibitors in CNS disorders [3,7,8]. [Pg.4]

At this point one question must be answered Is the potential calculated in the manner above path independent [21] Equivalently, is the field given by Equation 7.33 curl-free For one-dimensional cases and within the central field approximation for atoms, it is. For other systems, there is a small solenoidal component [21,22] and we will see later that it arises from the difference in the kinetic energy of the true system and the corresponding Kohn-Sham system (in this case the HF system and its Kohn-Sham counterpart). For the time being, we explore whether the physics of calculating the potential in the manner prescribed above is correct in the cases where the curl of the field vanishes. [Pg.93]

In our non-BO calculations performed so far, we have considered atomic systems with only -electrons and molecular systems with only a-electrons. The atomic non-BO calculations are much less complicated than the molecular calculations. After separation of the center-of-mass motion from the Hamiltonian and placing the atom nucleus in the center of the coordinate system, the internal Hamiltonian describes the motion of light pseudoelectrons in the central field on a positive charge (the charge of the nucleus) located in the origin of the internal coordinate system. Thus the basis functions in this case have to be able to accurately describe only the electronic correlation effect and the spherically symmetric distribution of the electrons around the central positive charge. [Pg.396]

Spatial cooperation is a term coined to describe a situation when disease in one particular anatomic site is missed by one modality but is treated adequately by another. The essence of this is that radiation is a local therapy that will not impact on metastatic disease beyond the planned field borders. Systemic cytotoxic chemotherapy is traditionally used to address the potential distant spread of cancer. In the original description of this mechanism there is no assumption of an interaction between the drugs and radiation with the idea being that the best radiation and best chemotherapy be administered independently of toxicities. The classic example used in several textbooks to illustrate this is the treatment of childhood leukemia with systemic chemotherapy, while their central nervous system, a potential sanctuary site where disease is not treated adequately by chemotherapy, is treated by radiation (28). The reality of the interaction between radiation and chemotherapy is that the dose and timing of radiation are adjusted accordingly to minimize their impact on the neural tissues. [Pg.8]


See other pages where Central-field systems is mentioned: [Pg.204]    [Pg.204]    [Pg.105]    [Pg.460]    [Pg.879]    [Pg.1129]    [Pg.73]    [Pg.214]    [Pg.199]    [Pg.53]    [Pg.173]    [Pg.165]    [Pg.5]    [Pg.48]    [Pg.627]    [Pg.80]    [Pg.60]    [Pg.110]    [Pg.165]    [Pg.472]    [Pg.554]    [Pg.3]    [Pg.148]    [Pg.509]    [Pg.235]    [Pg.187]    [Pg.12]    [Pg.69]    [Pg.5]    [Pg.10]    [Pg.663]    [Pg.156]    [Pg.110]    [Pg.222]    [Pg.348]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Field central

Field systems

The one-electron central-field system

© 2024 chempedia.info