Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituted celluloses

For the oxidative pyrolysis (pyrolysis in the presence of oxygen around 100° C to 150° C, namely below the ignition temperature), it was shown that in contrast to cellulose, substituted celluloses degrade oxidatively [23a]. This was evaluated in more depth for ethyl cellulose [51]. The reaction starts probably with the initiation step at the free aldehyde groups ... [Pg.272]

Krassig (1) gives a detailed discussion of the effect of the morphology and stmcture of cellulose on its reactivity and on cellulose substitution reactions. [Pg.26]

Acetyl)ethyl cellulose (substitution degree = 2.5) left-> right chloroform, dichloromethane, dichloroacetic acid, aqueous phenol, acetic acid, m-cresol... [Pg.367]

Phenylacetoxy cellulose (substitution degree = 1.9) /left dichloromethane... [Pg.367]

Based upon D.S and ethylation efficiency the optimum reaction time for the first stage appears to be two hours. Longer reaction times lead to extensive hydrolysis and only small increases in the extent of substitution. In general by-product formation occurs subsequent to cellulose substitution so minimum reaction times favor high efficiency. [Pg.50]

M.C. Bonferoni, S. Rossi, F. Ferrari, M. Bertoni, C. Caramella, A study of three hydroxy-propyl cellulose substitution types Effect of particle size and shape on hydrophilic matrix performance, STP Pharma Sci, 6 277-284,1996. [Pg.41]

Hemodialysis is a form of renal support that utilizes the diffusion of solutes across a semipermeable membrane to restore electrolyte and acid-base balance. Membranes vary from low flux (low permeability, high pore size cutoffs) to high flux (high permeability, low pore size cutoffs) depending on the material used, which include cellulose, substituted cellulose, synthetic cellulose, or synthetic noncel-lulose. Hemodialysis is limited to the removal of water-soluble molecules and is generally unable to remove large molecules and hpophihc albumin-bound molecules. The use of lipophihc membranes in conjunction with hemodialysis is one option that has been studied to help eliminate hpophihc toxins. ... [Pg.1603]

Cellulose triacetate is obtained by the esterification of cellulose (qv) with acetic anhydride (see Cellulose esters). Commercial triacetate is not quite the precise chemical entity depicted as (1) because acetylation does not quite reach the maximum 3.0 acetyl groups per glucose unit. Secondary cellulose acetate is obtained by hydrolysis of the triacetate to an average degree of substitution (DS) of 2.4 acetyl groups per glucose unit. There is no satisfactory commercial means to acetylate direcdy to the 2.4 acetyl level and obtain a secondary acetate that has the desired solubiUty needed for fiber preparation. [Pg.290]

PyraZolines. l,3-Diphenyl-2-pyia2olines (7) (Table 2) aie obtainable from appiopiiately substituted phenyUiydiazines by the Knoii reaction with either P-chloro- or P-dimethylaminopropiophenones (30,31). They are employed for brightening synthetic fibers such as polyamides, cellulose acetates, and polyacrylonitriles. [Pg.116]

Carboxymethylcellulose Sodium. Carboxymethyl ether of cellulose sodium salt (Citmcel) (8) is a white granular substance soluble in water depending on the degree of substitution. It is equally soluble in cold and hot water and may be prepared by treating alkaU cellulose with sodium chloroacetate. [Pg.200]

Sodium carboxymethyl cellulose [9004-32-4] (CMC) and hydroxyethyl cellulose [9004-62-0] (HEC) are the ceUulosics most widely used in drilling fluids (43). CMC is manufactured by carboxymethylation of cellulose which changes the water-insoluble cellulose into the water-soluble CMC (44). Hydroxyethyl cellulose and carboxymethyl hydroxyethyl cellulose (CMHEC) are made by a similar process. The viscosity grade of the material is determined by the degree of substitution and the molecular weight of the finished product. [Pg.179]

Considerable effort has been devoted to finding alternative fibers or minerals to replace asbestos fibers ia their appHcations. Such efforts have been motivated by various reasons, typically, avadabihty and cost, and more recendy, health concerns. During Wodd War I, some countries lost access to asbestos fiber suppHes and had to develop substitute materials. Also, ia the production of fiber reiaforced cement products, many developiug countries focused on alternatives to asbestos fibers, ia particular on cellulose fibers readily available locally at minimal cost. Siace the 1980s however, systematic research has been pursued ia several iudustrialized countries to replace asbestos fibers ia all of their current appHcations because of perceived health risks. [Pg.355]

Every polysaccharide contains glycosyl units with unsubstituted hydroxyl groups available for esterification or etherification. Polysaccharide derivatives are described by their degree of substitution (DS), which is the average number of substituent groups per glycosyl unit. Because each monomeric unit of cellulose molecules has free hydroxyl groups at C-2, C-3, and C-6, the maximum DS for cellulose, and all polysaccharides composed exclusively of neutral hexosyl units, the majority of polysaccharides, is 3.0. [Pg.484]

Xanthan. Xanthan, known commercially as xanthan gum [11138-66-2], has a main chain of (1 — 4)-linked P-D-glucopyranosyl units therefore, the chemical stmeture of the main chain is identical to the stmeture of cellulose [9004-34-6]. However, in xanthan, every other P-D-glucopyranosyl unit in the main chain is substituted on 0-3 with a trisaccharide unit. The trisaccharide side chain consists of (reading from the terminal, nonreducing end in towards the main chain) a -D-mannopyranosyl unit linked (1 — 4) to a P-D-glucopyranosyluronic acid unit linked (1 — 2) to a... [Pg.488]

Cellulose acetate [9004-35-7] is the most important organic ester because of its broad appHcation in fibers and plastics it is prepared in multi-ton quantities with degrees of substitution (DS) ranging from that of hydrolyzed, water-soluble monoacetates to those of fully substituted triacetate (Table 1). Soluble cellulose acetate was first prepared in 1865 by heating cotton and acetic anhydride at 180°C (1). Using sulfuric acid as a catalyst permitted preparation at lower temperatures (2), and later, partial hydrolysis of the triacetate gave an acetone-soluble cellulose acetate (3). The solubiUty of partially hydrolyzed (secondary) cellulose acetate in less expensive and less toxic solvents such as acetone aided substantially in its subsequent commercial development. [Pg.248]

Production of cellulose esters from aromatic acids has not been commercialized because of unfavorable economics. These esters are usually prepared from highly reactive regenerated cellulose, and their physical properties do not differ markedly from cellulose esters prepared from the more readily available aHphatic acids. Benzoate esters have been prepared from regenerated cellulose with benzoyl chloride in pyridine—nitrobenzene (27) or benzene (28). These benzoate esters are soluble in common organic solvents such as acetone or chloroform. Benzoate esters, as well as the nitrochloro-, and methoxy-substituted benzoates, have been prepared from cellulose with the appropriate aromatic acid and chloroacetic anhydride as the impelling agent and magnesium perchlorate as the catalyst (29). [Pg.251]

Cellulose dissolved in suitable solvents, however, can be acetylated in a totally homogeneous manner, and several such methods have been suggested. Treatment in dimethyl sulfoxide (DMSO) with paraformaldehyde gives a soluble methylol derivative that reacts with glacial acetic acid, acetic anhydride, or acetyl chloride to form the acetate (63). The maximum degree of substitution obtained by this method is 2.0 some oxidation also occurs. Similarly, cellulose can be acetylated in solution with dimethylacetamide—paraformaldehyde and dimethylformamide-paraformaldehyde with a potassium acetate catalyst (64) to provide an almost quantitative yield of hydroxymethylceUulose acetate. [Pg.253]

Determining the degree of substitution using standard proton nmr refles on the integral ratio between the ceUulosic ring protons ( i 5.0-2.96) and the ester alkyl protons ( i 1.26 for butyryl and propionyl and i 2.06 for acetyl methyl groups). This simple procedure is used extensively to determine the extent of esterification and is currently the fastest, easiest way for determining the DS of mixed cellulose esters. [Pg.257]

Grain that is usable as food or feed is an expensive substrate for this fermentation process. A cheaper substrate might be some source of cellulose such as wood or agricultural waste. This, however, requires hydrolysis of cellulose to yield glucose. Such a process was used in Germany during World War II to produce yeast as a protein substitute. Another process for the hydrolysis of wood, developed by the U.S. Forest Products Laboratory, Madison, Wisconsin, uses mineral acid as a catalyst. This hydrolysis industry is very large in the former Soviet Union but it is not commercial elsewhere. [Pg.450]

Milk. Imitation milks fall into three broad categories filled products based on skim milk, buttermilk, whey, or combinations of these synthetic milks based on soybean products and toned milk based on the combination of soy or groundnut (peanut) protein with animal milk. Few caseinate-based products have been marketed (1,22,23). Milk is the one area where nutrition is of primary concern, especially in the diets of the young. Substitute milks are being made for human and animal markets. In the latter area, the emphasis is for products to serve as milk replacers for calves. The composition of milk and filled-milk products based on skim milk can be found in Table 10. Table 15 gives the composition of a whey /huttermilk-solids-hased calf-milk replacer, which contains carboxymethyl cellulose (CMC) for proper viscosity of the product. [Pg.447]

Diaziridines also show slow nitrogen inversion, and carbon-substituted compounds can be resolved into enantiomers, which typically racemize slowly at room temperature (when Af-substituted with alkyl and/or hydrogen). For example, l-methyl-3-benzyl-3-methyl-diaziridine in tetrachloroethylene showed a half-life at 70 °C of 431 min (69AG(E)212). Preparative resolution has been done both by classical methods, using chiral partners in salts (77DOK(232)108l), and by chromatography on triacetyl cellulose (Section 5.08.2.3.1). [Pg.7]


See other pages where Substituted celluloses is mentioned: [Pg.110]    [Pg.257]    [Pg.61]    [Pg.705]    [Pg.367]    [Pg.367]    [Pg.37]    [Pg.51]    [Pg.110]    [Pg.257]    [Pg.61]    [Pg.705]    [Pg.367]    [Pg.367]    [Pg.37]    [Pg.51]    [Pg.1015]    [Pg.295]    [Pg.179]    [Pg.482]    [Pg.483]    [Pg.262]    [Pg.278]    [Pg.155]    [Pg.156]    [Pg.242]    [Pg.251]    [Pg.251]    [Pg.252]    [Pg.257]    [Pg.265]    [Pg.265]    [Pg.315]    [Pg.447]    [Pg.72]    [Pg.356]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Cellulose nitrate Mono substituted

Hydroxypropyl cellulose low-substituted

Molar substitution cellulose polymer

Nucleophilic substitution, cellulose

Substituted cellulose ether

Water-soluble cellulose ether substitution

© 2024 chempedia.info