Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose reflectance

Co, Ni, Zn Cellulose Reflectance spectrometry + neocuproin or dimethyl-glyoxime pg-Range 235)... [Pg.188]

Spreading and reflective layer (Ti02 pigmented porous cellulose acetate coating)... [Pg.41]

In 1989 quantity costs, which reflect the lowest cost, of urea molding compounds, were approximately 1.41 /kg ( 0.035/in. for black and brown colors, 1.58/kg ( 0.039/in.for white and ivory special colors are somewhat higher in price. The approximate cost of cellulose-filled melamine molding compound is 1.74/kg ( 0.043/in. ). Glass fiber-filled melamine sells for 7.70/kg ( 0.22/in. ). [Pg.327]

Structure of the Cell Wall. The iaterior stmcture of the ceU wall is shown in Figure 6. The interfiber region is the middle lamella (ML). This region, rich in lignin, is amorphous and shows no fibnUar stmcture when examined under the electron microscope. The cell wall is composed of stmcturaHy different layers or lamellae, reflecting the manner in which the cell forms. The newly formed cell contains protoplasm, from which cellulose and the other cell wall polymers are laid down to thicken the cell wall internally. Thus, there is a primary wall (P) and a secondary wall (S). The secondary wall is subdivided into three portions, the S, S2, and layers, which form sequentially toward the lumen. Viewed from the lumen, the cell wall frequendy has a bumpy appearance. This is called the warty layer and is composed of protoplasmic debris. The warty layer and exposed layer are sometimes referred to as the tertiary wad. [Pg.250]

The second choice is a simpler solution. According to Sarko and Muggli,66 all 39 observed reflections in the Valonia X-ray pattern are indexable by a two-chain triclinic unit cell with a = 9.41, b =8.15 and c = 10.34 A, a = 90°, 3 = 57.5°, and y = 96.2°. Ramie cellulose, on the other hand, is completely consistent with the two-chain monoclinic unit cell. Also, there are significant differences between their high-resolution solid-state l3C NMR spectra, indicating that Valonia and ramie celluloses, the two most crystalline forms, reflect two distinct families of biosynthesis. On this basis, the Valonia triclinic and the ramie monoclinic forms are classified69 as Ia and Ip, respectively. It has been shown from a systematic analysis of the NMR spectra by these authors, and from electron-dif-... [Pg.330]

The Fourier Trairsform Infrared (FTIR) spectrum obtained from non-adapted tomato cell walls is very similar to that from the onion parenchyma cell wall (both contain cellulose, xyloglucan and pectin) although there is more protein in the tomato walls (amide stretches at 1550 and 1650 cm-i) (Fig 4). In DCB-adapted tomato cell walls, the spectrum more closely resembles that of either purified pectins or of a commercial polygalacturonic acid sample from Sigma with peaks in common at 1140, 1095, 1070, 1015 and 950 cm-t in the carbohydrate region of the spectrum as well as the free acid stretches at 1600 and 1414 cm-i and an ester peak at 1725 cm-k An ester band at 1740 cm-i is evident in both onion parenchyma and non-adapted tomato cell wall samples. It is possible that this shift in the ester peak simply reflects the different local molecular environment of this bond, but it is also possible that a different ester is made in the DCB-adapted cell walls, as phenolic esters absorb around 1720 cm-i whilst carboxylic esters absorb at 1740 cm-k The... [Pg.96]

Most probably, the first - but non-fiberoptic - sensors for continuous use where those for pH and for oxygen. It has been known for decades that cellulosic paper can be soaked with pH indicator dyes to give pH indicator strips which, however, leached and thus were of the "single-use" type. The respective research and development is not easily traced back since it is not well documented in the public literature. However, in the 1970s, indicator strips became available where they pH indicator dye was covalently linked to the cellulose matrix, usually via vinylsulfonyl groups. These "nonbleeding" test strips allowed a distinctly improved and continuous pH measurement, initially by visual inspection. In the late 1980 s instruments were made available that enabled the color (more precisely the reflectance) of such sensor strips to be quantified and related to pH. Respective instruments are based on the use of LEDs and are small enough to be useful for field tests in that they can be even hand-held. This simple and low cost detection system is still superior to many of the complicated, if not expensive optical pH sensors that have been described in the past 20 years. [Pg.19]

The products formed by the decomposition of sodiocellulose by aqueous reagents and alcohols were studied. For the sodiocellulose prepared from native cellulose by aqueous treatment, the spacing of the 101 reflection varied considerably with the experimental conditions (the greatest being 9.24 A 924 pm). Although the 101 and 002 reflections did not vary in spacing, their relative intensities were af-... [Pg.394]

The unit cell of cellulose from Chaetomorpha melagonium is monoclinic, with a = 16.43 A (1.643 nm), b(fiber axis) = 10.33 A (1.033 nm), c = 15.70 A (1.570 nm), and /3 = 96.97°. In base-plane projection, each of the Meyer-Misch subcells that make up the super-lattice are identical. All equatorial reflections can be indexed by using a one-chain unit-cell, meaning that every single chain has... [Pg.395]

The versatility of this system is reflected in its suitability for blends of wool with other fibres [89]. The ideal conditions for the dyeing of wool/acrylic blends are at pH 4-5 and Albegal SET inhibits the risk of co-precipitation between Lanaset anionic dyes and basic dyes. Lanaset dyes are quite stable when dyeing polyester/wool at pH 4-5 and 115-120°C using Irgasol HTW (Ciba) as wool protectant. These dyes are also suitable for dyeing wool in its blends with silk, nylon or cellulosic fibres. [Pg.275]

Macromolecules are found in nature. Cellulose, wool, starch, and DNA are but a few of the macromolecules that occur naturally. Carbons ability to form these large, complex molecules is necessary to provide the diversity of compounds needed to make up a tree or a human being. But many of the useful macromolecules that we use every day are created in the lab and industrial complex by chemists. Nylon, rayon, polyethylene, and polyvinyl chloride are all synthetic macromolecules. They differ by which repeating units (monomers) are joined together in the polymerization process. Our society has grown to depend on these plastics, these synthetic fabrics. The complexity of carbon compounds is reflected in the complexity of our modern society. [Pg.274]


See other pages where Cellulose reflectance is mentioned: [Pg.128]    [Pg.128]    [Pg.290]    [Pg.32]    [Pg.11]    [Pg.451]    [Pg.262]    [Pg.276]    [Pg.366]    [Pg.69]    [Pg.265]    [Pg.139]    [Pg.159]    [Pg.94]    [Pg.314]    [Pg.326]    [Pg.331]    [Pg.337]    [Pg.353]    [Pg.383]    [Pg.388]    [Pg.391]    [Pg.42]    [Pg.103]    [Pg.6]    [Pg.1012]    [Pg.427]    [Pg.97]    [Pg.127]    [Pg.410]    [Pg.228]    [Pg.230]    [Pg.230]    [Pg.355]    [Pg.74]    [Pg.41]    [Pg.400]    [Pg.402]    [Pg.285]    [Pg.225]   
See also in sourсe #XX -- [ Pg.374 ]




SEARCH



© 2024 chempedia.info