Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose behavior

Gagliardi, E. and Brodar, B., Thin-layer chromatography of metals on cellulose. Behavior of Group IIIB in the halogenic acid-alcohol system, Chromatographia, 2, 267, 1969. [Pg.197]

Many ceUulosic derivatives form anisotropic, ie, Hquid crystalline, solutions, and cellulose acetate and triacetate are no exception. Various cellulose acetate anisotropic solutions have been made using a variety of solvents (56,57). The nature of the polymer—solvent interaction determines the concentration at which hquid crystalline behavior is initiated. The better the interaction, the lower the concentration needed to form the anisotropic, birefringent polymer solution. Strong organic acids, eg, trifluoroacetic acid are most effective and can produce an anisotropic phase with concentrations as low as 28% (58). Trifluoroacetic acid has been studied with cellulose triacetate alone or in combination with other solvents (59—64) concentrations of 30—42% (wt vol) triacetate were common. [Pg.297]

The viscosity range of CN products can be adjusted in advance by choosing the starting cellulose with an appropriate degree of polymerization (DP). A study of the different celluloses examined the impact of various cellulose properties, such as morphological factors (percent crystallinity, fiber length, and distribution), chemical composition (DP, ash content), and hemiceUulose and lignin content, on the nitration behaviors of cellulose (55). [Pg.266]

The most commonly used polymers are cellulose acetate phthalate [9004-38-0] (CAP), poly(vinyl acetate phthalate) [34481-48-6] (PVAP), hydroxypropylmethyl-ceUulosephthalate [71138-97-1] (HPMCP), and polymethacrylates (111) (see Cellulose esters). Acrylate copolymers are also available (112). Eigure 11 shows the dissolution behavior of some commercially available enteric materials. Some manufacturers supply grades designed to dissolve at specific pH values with increments as small as 0.5 pH unit (113). [Pg.148]

Lu and Pizzi [83] showed that lignocellulosic substrates have a distinct influence on the hardening behavior of PF-resins, whereby the activation energy of the hardening process is much lower than for the resin alone [84]. The reason is a catalytic activation of the PF-condensation by carbohydrates like crystalline and amorphous cellulose and hemicellulose. Covalent bonding between the PF-resin and the wood, especially lignin, does not play any role [84]. [Pg.1056]

Cellulose layers are produced from native, fibrous or microcrystalline cellulose (Avicel ). The separation behaviors of these naturally vary, because particle size (fiber length), surface, degree of polycondensation and, hence, swelling behavior are all different. [Pg.123]

Table 11 Synergistic behavior of Nitrogen Compounds on Cellulose-PCP blends... Table 11 Synergistic behavior of Nitrogen Compounds on Cellulose-PCP blends...
Tensile strength of the fibers is also determined by the refinement of the fiber [14] (Fig. 4). Hydrophilic properties are a major problem for all cellulose fibers. The moisture content of the fibers amounts to 10 wt% at standard atmosphere. Their hydrophilic behavior influences the properties of the fiber itself (Table 3) as well as the properties of the composite at production [15]. [Pg.790]

As for the solid support, several polymer-supported amines were tested (Fig. 2). For either the pyrazole and isoxazole synthesis, the best results were given by aniline-functionalized cellulose, which has also the advantage of a relatively low cost. For the 2-aminopyrimidine library, polystyrene-based piperazine and piperidine gave products with a much higher purity compared with other secondary non-cyclic or primary amines, hi both cases, the resins could be reused for up to four times before degradation in their behavior was observed. This reusability could be further enhanced (up to 10 cycles for cellulose-based aniline) when the microwave-assisted protocols were used. [Pg.143]

The results of mechanical properties (presented later in this section) showed that up to 20 phr, the biofillers showed superior strength and elongation behavior than CB, cellulose being the best. After 30 phr the mechanical properties of biocomposites deteriorated because of the poor compatibility of hydrophilic biopolymers with hydrophobic natural rubber(results not shown). While increasing quantity of CB in composites leads to constant increase in the mechanical properties. Scanning electron micrographs revealed presence of polymer-filler adhesion in case of biocomposites at 20 phr. [Pg.122]

Paper chromatography (PC) and thin layer chromatography (TLC) have been used since the 1940s. Preparative PC on Whatman 3 paper, analytical PC on Whatman 1 paper, and analytical TLC on microcrystalline cellulose, silica gel, or polyamide have been applied with a variety of solvents and the behaviors of anthocyanins have been similar in all media. Two-dimensional TLC allows the separation of several compounds and has been nsed to clarify the anthocyanin compositions of different commodities. ... [Pg.488]

Electrokinetic processes are widely used in different fields of science and technology. We had already mentioned the use of electrokinetic processes for research into the electric properties of surface layers of insulating materials. Such measurements are used, in particular, when studying the surface properties of polymeric materials, their behavior in different media, and their interactions with other materials (e.g., with adsorbing surface-active substances). The results of this research are used in textile, cellulose and paper, and other industries. [Pg.605]

The flow behavior in miniaturized hemodialyzer modules with two types of biocompatible membrane materials, SMC and SPAN, was investigated by using doubly distilled water as the flowing fluid in both compartments, subsequently termed membrane side (M) and dialysate side (D), respectively (Figure 4.6.1 (c, d)) [12], SMC stands for Synthetically Modified Cellulose and SPAN for Special PolyAcryloNitrile-based copolymer (Akzo Nobel, Membrana GmbH), both types representing standard membrane material. The capillaries made from this hollow... [Pg.458]

Utilization of a microfabricated rf coil and gradient set for viscosity measurements has recently been demonstrated [49]. Shown in Figure 4.7.9 is the apparent viscosity of aqueous CMC (carboxymethyl cellulose, sodium salt) solutions with different concentrations and polymer molecular weights as a function of shear rate. These viscosity measurements were made using a microfabricated rf coil and a tube with id = 1.02 mm. The shear stress gradient, established with the flow rate of 1.99 0.03 pL s-1 was sufficient to observe shear thinning behavior of the fluids. [Pg.487]

Huisman, T. H. J. and Dozy, A. M., Studies on the heterogeneity of hemoglobin. IV. Chromatographic behavior of different human hemoglobins on anion-exchange cellulose (DEAE-cellulose), /. Chromatogr., 7, 180, 1962. [Pg.280]

Redox behavior of anthraquinone is shown in Scheme 4. The quinone moiety may be reduced to the hydroquinone form and converted to a leuco salt under alkali conditions. In general, the leuco salt has a strong affinity for cellulose and is soluble in water. The hydroquinone form is insoluble in water and has low affinity to cellulose. The preferred dyeing procedure depends on the structure and properties of the vat dye. The variables that are used to control the process include, e.g., strength and amount of alkali, reduction temperature, and the presence of salts. During the process of reduction, some side reactions, such as overreduction, hydrolysis,... [Pg.54]

For suspensions primarily stabilized by a polymeric material, it is important to carefully consider the optimal pH value of the product since certain polymer properties, especially the rheological behavior, can strongly depend on the pH of the system. For example, the viscosity of hydrophilic colloids, such as xanthan gums and colloidal microcrystalline cellulose, is known to be somewhat pH- dependent. Most disperse systems are stable over a pH range of 4-10 but may flocculate under extreme pH conditions. Therefore, each dispersion should be examined for pH stability over an adequate storage period. Any... [Pg.258]

DC Harsh, SH Gehrke. Modeling swelling behavior of cellulose ether hydrogels. In M El-Nokaly, D Piatt, B Charpentier, eds. Polymeric Delivery Systems. ACS Symp Ser 520. Washington, DC American Chemical Society, 1993, pp 105-134. [Pg.550]


See other pages where Cellulose behavior is mentioned: [Pg.1120]    [Pg.3]    [Pg.5]    [Pg.151]    [Pg.257]    [Pg.271]    [Pg.2036]    [Pg.202]    [Pg.1120]    [Pg.114]    [Pg.314]    [Pg.496]    [Pg.537]    [Pg.582]    [Pg.20]    [Pg.36]    [Pg.43]    [Pg.136]    [Pg.185]    [Pg.128]    [Pg.353]    [Pg.183]    [Pg.542]    [Pg.584]    [Pg.7]    [Pg.432]    [Pg.218]    [Pg.457]    [Pg.127]    [Pg.512]    [Pg.474]    [Pg.604]   
See also in sourсe #XX -- [ Pg.185 , Pg.186 , Pg.187 , Pg.188 , Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 ]




SEARCH



Cellulose derivative behavior

Cellulose derivatives thermal behavior

Cellulose fibers chemical behavior

Cellulose self-assembly behavior

Hydrodynamic behavior, cellulose

© 2024 chempedia.info