Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cell membranes protein component

While the fluid mosaic model of membrane stmcture has stood up well to detailed scrutiny, additional features of membrane structure and function are constantly emerging. Two structures of particular current interest, located in surface membranes, are tipid rafts and caveolae. The former are dynamic areas of the exo-plasmic leaflet of the lipid bilayer enriched in cholesterol and sphingolipids they are involved in signal transduction and possibly other processes. Caveolae may derive from lipid rafts. Many if not all of them contain the protein caveolin-1, which may be involved in their formation from rafts. Caveolae are observable by electron microscopy as flask-shaped indentations of the cell membrane. Proteins detected in caveolae include various components of the signal-transduction system (eg, the insutin receptor and some G proteins), the folate receptor, and endothetial nitric oxide synthase (eNOS). Caveolae and lipid rafts are active areas of research, and ideas concerning them and their possible roles in various diseases are rapidly evolving. [Pg.422]

Since gel permeation discrimination depends on Re, it is apparent that dramatically enhanced resolution is obtainable in 6M GuHCl. This factor has led to the use of this technique for analysis of such complex mixtures as proteolytic digestion products (12,13) and red cell membrane proteins (14). An added dividend of the method is recovery of the isolated polypeptide components for further physical or chemical studies. [Pg.328]

Although cell membrane proteins interact with each other and lipid components to dlow maintenance of a negatively charged, hydrophobic bilayer tiiat permits the entry of nutrients but keeps the nucleic acids of the cell from escapingl, the contacts formed are not exclusively "hydrophobic . Several parts of the sequence must interact with a series of other molecules in order for the protein to be properly placed within the membrane amino terminal leader peptides target the... [Pg.23]

Indications of nonenzymatic glycosylation of red cell membrane proteins was first reported in 1976 (B2). Analysis of the various protein components of the erythrocyte membrane indieated that glycosylation of red cell ghosts in 18 diabetics was twice that in normal individuals and correlated with levels of Hb Ajj. (M25). Comparison of individual membrane protein bands on sodium dodecyl sulfate-polyacrylamide electrophoresis did not indicate any... [Pg.38]

Of these families the ABC and MFS families are by far the largest. Gram-positive bacteria usually require only a single component efflux mechanism to pump the drug out of the cytoplasmic membrane whereas gram-negative bacteria have a multicomponent efflux mechanism including the membrane efflux pump (MFP) and an outer membrane protein component (OMP) to efflux out of the cytoplasmic membrane and across the cell envelope. [Pg.380]

Phosphatidylcholine is an important component of cell membranes but cell mem branes are more than simply lipid bilayers Although their composition varies with their source a typical membrane contains about equal amounts of lipid and protein and the amount of cholesterol m the lipid fraction can approximate that of phosphatidylcholine The lipid fraction is responsible for the structure of the membrane Phosphatidyl choline provides the bilayer that is the barrier between what is inside the cell and what IS outside Cholesterol intermingles with the phosphatidylcholine to confer an extra measure of rigidity to the membrane... [Pg.1078]

In fine wool such as that obtained from merino sheep, the cuticle is normally one cell thick (20 x 30 x 0.5 mm, approximate dimensions) and usually constitutes about 10% by weight of the total fiber. Sections of cuticle cells show an internal series of laminations (Figs. 1 and 2) comprising outer sulfur-rich bands known as the exocuticle and inner regions of lower sulfur content called the endocuticle (13). On the exposed surface of cuticle cells, a membrane-like proteinaceous band (epicuticle) and a unique hpid component form a hydrophobic resistant barrier (14). These hpid and protein components are the functional moieties of the fiber surface and are important in fiber protection and textile processing (15). [Pg.340]

Proteins are macromolecules that play many roles such as serving as enzymes or components of cell membranes and muscle. The antibodies that protect against invasion by foreign substances are themselves proteins. There are twenty-odd amino acids found regularly in most naturally occurring proteins. Because of the great length of protein chains and the various sequences of amino acids, the theoretic number of possible proteins is astronomical. The amino acid sequence is referred to as the primaiy structure of a protein. The pol eptide... [Pg.2132]

Ras is a G protein that cycle between two conformations, an activated Ras-GTP or inactivated form Ras-GDP. Ras, attached to the cell membrane by lipidation, is a key component in many signalling cascades, which couple growth factor receptors to downstream effectors that control such processes as cytoskeletal integrity, proliferation, cell adhesion, apoptosis and cell migration. Mutations and dysregulations of the Ras protein leading to increased invasion and metastasis, and decreased apoptosis are very common in cancers. [Pg.1060]

Virus maturation and assembly at the cell membrane or the nuclear membrane has long been seen as a potential target for antiviral compounds. For the virus to mature and be released in a conformation that will insure stability and survival of the viral genome in the exttacellular enviromnent, the protein subunits of the capsid or nucle-ocapsids have to be transported to the assembly point where they will form the final particles around the viral nucleic acid. If this process does not occur in an orderly and programmed manner, the capsid subunits will not form the required multimers and the viral components will become targets for the cellular disposal mechanisms. [Pg.168]

The use of Upid bilayers as a relevant model of biological membranes has provided important information on the structure and function of cell membranes. To utilize the function of cell membrane components for practical applications, a stabilization of Upid bilayers is imperative, because free-standing bilayer lipid membranes (BLMs) typically survive for minutes to hours and are very sensitive to vibration and mechanical shocks [156,157]. The following concept introduces S-layer proteins as supporting structures for BLMs (Fig. 15c) with largely retained physical features (e.g., thickness of the bilayer, fluidity). Electrophysical and spectroscopical studies have been performed to assess the appUcation potential of S-layer-supported lipid membranes. The S-layer protein used in aU studies on planar BLMs was isolated fromB. coagulans E38/vl. [Pg.369]

Membranes and their components are dynamic structures. The lipids and proteins in membranes undergo turnover there just as they do in other compartments of the cell. Different lipids have different turnover rates, and the turnover rates of individual species of membrane proteins may vary widely. The membrane itself can turn over even more rapidly than any of its constituents. This is discussed in more detail in the section on endocytosis. [Pg.419]

There are receptors (TfRs) on the surfaces of many cells for transferrin, it binds to these receptors and is internalized by receptor-mediated endocytosis (compare the fate of LDL Chapter 25). The acid pH inside the lysosome causes the iron to dissociate from the protein. The dissociated iron leaves the endosome via DMTl to enter the cytoplasm. Unlike the protein component of LDL, apoTf is not degraded within the lysosome. Instead, it remains associated with its receptor, returns to the plasma membrane, dissociates from its receptor, reenters the plasma, picks up more iron, and again delivers the iron to needy ceils. [Pg.586]

A semi-permeable membrane, which is unequally permeable to different components and thus may show a potential difference across the membrane. In case (1), a diffusion potential occurs only if there is a difference in mobility between cation and anion. In case (2), we have to deal with the biologically important Donnan equilibrium e.g., a cell membrane may be permeable to small inorganic ions but impermeable to ions derived from high-molecular-weight proteins, so that across the membrane an osmotic pressure occurs in addition to a Donnan potential. The values concerned can be approximately calculated from the equations derived by Donnan35. In case (3), an intermediate situation, there is a combined effect of diffusion and the Donnan potential, so that its calculation becomes uncertain. [Pg.65]


See other pages where Cell membranes protein component is mentioned: [Pg.12]    [Pg.61]    [Pg.249]    [Pg.272]    [Pg.252]    [Pg.164]    [Pg.809]    [Pg.46]    [Pg.203]    [Pg.354]    [Pg.284]    [Pg.227]    [Pg.62]    [Pg.126]    [Pg.209]    [Pg.177]    [Pg.1276]    [Pg.1317]    [Pg.95]    [Pg.159]    [Pg.56]    [Pg.531]    [Pg.596]    [Pg.600]    [Pg.614]    [Pg.615]    [Pg.269]    [Pg.6]    [Pg.182]    [Pg.228]    [Pg.118]    [Pg.827]    [Pg.90]    [Pg.266]    [Pg.462]    [Pg.105]   
See also in sourсe #XX -- [ Pg.41 , Pg.42 ]




SEARCH



Cell membranes membrane component)

Cell membranes proteins

Cells components

Membrane component

Proteins membrane component

© 2024 chempedia.info