Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration cells measurement

Similar to what was shown for growth, some models establish a linear relationship between the specific death rate (kj) and an autoinhibitory product synthesis (Lee et al., 1995). This autoinhibitory product is represented by the expression Xv/D, where Xv is a viable cells concentration, measured in terms of cell number per volume, and D is the specific feed rate that plays the part of substrate supply to the culture. By setting kj/px as a function of Xt/D (where Xt is a total cell concentration) it is possible to build up a more robust model that can fit a larger amount of experimental data (Equation 56) (Zeng et al., 1998). [Pg.203]

Adapted from Portner and Schafer, 1996). Xt, total cell concentration measured as total cell number per volume (106 cell/ml). [Pg.203]

FIGURE 4-4 Industrial optic fiber probe for cell concentration measurement. [Pg.116]

Different electrochemical sensors have been developed for cell concentration measurement. The most promising of these sensors are based on impedimetric measurements. A commercial version of a sensor that measures the frequency-dependent i)ermittivity is available from Aber Instruments Ltd [137-139]. Another type of electrochemical probe measures the potential changes in the cell suspension caused by the production of electroactive substances during cell growth [140-143]. To date, no on-line applications of these potentiometric sensors under real cultivation conditions have been reported. Other types of probes, such as amperometric and fuel-cell sensors, measure the current produced during the oxidation of certain compounds in the cell membrane. Mediators are often used to increase the sensitivity of the technique [143-145]. [Pg.338]

T. (1995) In situ microscopy for on-line characterization of cell-populations in bioreactors, including cell-concentration measurements by depth from focus. Biotechnol. Bioeng.. 47 106-116... [Pg.96]

Figure 56. Comparison of the viable cell concentration measured by the on-line capacitance signal with oxygen flux and the calorimetric-respirometric (CR) ratio in a batch culture of growing CHO320 cells. The medium was buffered by... Figure 56. Comparison of the viable cell concentration measured by the on-line capacitance signal with oxygen flux and the calorimetric-respirometric (CR) ratio in a batch culture of growing CHO320 cells. The medium was buffered by...
The diversity of interfacial electrochemical methods is evident from the partial family tree shown in Figure 11.1. At the first level, interfacial electrochemical methods are divided into static methods and dynamic methods. In static methods no current passes between the electrodes, and the concentrations of species in the electrochemical cell remain unchanged, or static. Potentiometry, in which the potential of an electrochemical cell is measured under static conditions, is one of the most important quantitative electrochemical methods, and is discussed in detail in Section IIB. [Pg.462]

In potentiometry the potential of an electrochemical cell is measured under static conditions. Because no current, or only a negligible current, flows while measuring a solution s potential, its composition remains unchanged. For this reason, potentiometry is a useful quantitative method. The first quantitative potentiometric applications appeared soon after the formulation, in 1889, of the Nernst equation relating an electrochemical cell s potential to the concentration of electroactive species in the cell. ... [Pg.465]

Electrochemical methods covered in this chapter include poten-tiometry, coulometry, and voltammetry. Potentiometric methods are based on the measurement of an electrochemical cell s potential when only a negligible current is allowed to flow, fn principle the Nernst equation can be used to calculate the concentration of species in the electrochemical cell by measuring its potential and solving the Nernst equation the presence of liquid junction potentials, however, necessitates the use of an external standardization or the use of standard additions. [Pg.532]

A particular concentration measure of acidity of aqueous solutions is pH which usually is regarded as the common logarithm of the reciprocal of the hydrogen-ion concentration (see Hydrogen-ION activity). More precisely, the potential difference of the hydrogen electrode in normal acid and in normal alkah solution (—0.828 V at 25°C) is divided into 14 equal parts or pH units each pH unit is 0.0591 V. Operationally, pH is defined by pH = pH(soln) + E/K, where E is the emf of the cell ... [Pg.20]

Group 12 (IIB) Perchlorates. The zinc perchlorate [13637-61 -17, cadmium perchlorate [13760-37-7] mercury(I) perchlorate [13932-02-0] and mercury(II) perchlorate [7616-83-3] all exist. Cell potential measurements show that zinc and cadmium perchlorates are completely dissociated in concentrations up to 0.1 molar in aqueous solutions (47—49). Mercurous perchlorate forms a tetrahydrate that can be readily converted to the dihydrate on heating to above 36°C (50). [Pg.66]

In principle, the two-angle interval method can produce all CBC parameters within a single measurement channel, uniquely providing ceU-by-ceU hemoglobin concentration. The mean of the concentrations provides an alternative (and direct) measurement of MCHC. The method also provides an alternative HGB measurement, because HGB may be set equal to (RBC x MCV x MCHC)/1000. This method, like the basic light-scattering method, uses the same flow cell to measure platelets and ted cells with the result that the method is capable of providing the CBC parameters RBC, HGB, HCT, MCV, MCHC, MCH, and PLT. The method can also count a sample s white blood cells if the sample s red blood cells have been lysed. [Pg.403]

C), (cmVohm geqmv) K = Ci/R = specific conductance, (ohm cm) h C = solution concentration, (gequiv/ ) Ot = conductance cell constant (measured), (cm ) R = solution electrical resistance, which is measured (ohm) and/(C) = a complicated function of concentration. The resulting equation of the electrolyte diffusivity is... [Pg.599]

Conductivity cell Concentration of salt solution. Measured conductivity that represents concentration is within +X% of final concentration. [Pg.578]

The sensor is the element of an instrument directly influenced by the measured quantity. In temperature measurement the thermal mass (capacity) of the sensor usually determines the meter s dynamics. The same applies to thermal anemometers. In IR analyzers used for concentration measurement, the volume of the flow cell and the sample flow rate are the critical factors. Some instruments, like sound-level meters, respond very fast, and follow the pressure changes up to several kHz. [Pg.1132]

The driving force behind the spontaneous reaction in a voltaic cell is measured by the cell voltage, which is an intensive property, independent of the number of electrons passing through the cell. Cell voltage depends on the nature of the redox reaction and the concentrations of the species involved for the moment, we ll concentrate on the first of these factors. [Pg.485]

Since concentration variations have measurable effects on the cell voltage, a measured voltage cannot be interpreted unless the cell concentrations are specified. Because of this, chemists introduce the idea of standard-state. The standard state for gases is taken as a pressure of one atmosphere at 25°C the standard state for ions is taken as a concentration of 1 M and the standard state of pure substances is taken as the pure substances themselves as they exist at 25°C. The half-cell potential associated with a halfreaction taking place between substances in their standard states is called ° (the superscript zero means standard state). We can rewrite equation (37) to include the specifications of the standard states ... [Pg.210]

When microbial cells are incubated into a batch culture containing fresh culture media, their increase in concentration can be monitored. It is common to use the cell dry weight as a measurement of cell concentration. The simplest relationships describing exponential cell growth are unstructured models. Unstructured models view the cell as an entity in solution, which interacts with the environment. One of the simplest models is that of Malthus 19... [Pg.51]

Typical approaches for measuring diffusivities in immobilised cell systems include bead methods, diffusion chambers and holographic laser interferometry. These methods can be applied to various support materials, but they are time consuming, making it onerous to measure effective dififusivity (Deff) over a wide range of cell fractions. Owing to the mathematical models involved, the deconvolution of diffusivities can be very sensitive to errors in concentration measurements. There are mathematical correlations developed to predict DeS as... [Pg.223]

Measure the optical cell density of S. cerevisiae at a wavelength of 520 nm. Try to collect data based on information required in Table 10.1. Draw a growth curve based on incubation time and cell dry weight. The cell concentration is an indication of microorganism growth. A standard calibration curve is needed before any actual experiment. [Pg.261]

Fig. 15. Effects of turbulent shear stress level and exposure time on cell viability measured by trypan blue staining. Cells were sheared in a concentric cylinder viscometer [1]... Fig. 15. Effects of turbulent shear stress level and exposure time on cell viability measured by trypan blue staining. Cells were sheared in a concentric cylinder viscometer [1]...
Similarly we can estimate the specific secretion rate. It is obvious from the previous analysis that an accurate estimation of the average specific rates can only be done if the integral Jxvdt is estimated accurately. If measurements of biomass or cell concentrations have been taken very frequently, simple use of the trapezoid rule for the computation of Jxvdt may suffice. If however the measurements are very noisy or they have been infrequently collected, the data must be first smoothed through polynomial fitting and then the integrals can be obtained analytically using the fitted polynomial. [Pg.125]

The specific death rate can be obtained by considering the corresponding mass balance for nonviable (dead) cells. Normally nonviable cell concentration is measured at the same time the measurement for viable cell concentration is made. If viability (Q data are available, the nonviable cell concentration can be obtained from the viable one as Xd=Xv(l-y/. ... [Pg.128]

Fluorescence-based methods do not directly measure ionic current but, rather, measure either membrane-potential-dependent or ion-concentration-dependent changes of fluorescence signals (from fluorescent dyes loaded into the cytosol or cell membrane) as a result of ionic flux. Because fluorescence-based methods give robust and homogeneous cell population measurement, these assays are relatively easy to set up and achieve high throughput. [Pg.48]


See other pages where Concentration cells measurement is mentioned: [Pg.63]    [Pg.63]    [Pg.494]    [Pg.693]    [Pg.402]    [Pg.402]    [Pg.403]    [Pg.403]    [Pg.403]    [Pg.2148]    [Pg.124]    [Pg.753]    [Pg.15]    [Pg.57]    [Pg.211]    [Pg.253]    [Pg.134]    [Pg.134]    [Pg.157]    [Pg.158]    [Pg.159]    [Pg.21]    [Pg.333]    [Pg.188]    [Pg.94]    [Pg.353]    [Pg.47]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Cells concentrators

Concentration cell

Concentration measurements

Concentration, measures

Measuring concentrations

© 2024 chempedia.info