Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiometric applications

In potentiometry the potential of an electrochemical cell is measured under static conditions. Because no current, or only a negligible current, flows while measuring a solution s potential, its composition remains unchanged. For this reason, potentiometry is a useful quantitative method. The first quantitative potentiometric applications appeared soon after the formulation, in 1889, of the Nernst equation relating an electrochemical cell s potential to the concentration of electroactive species in the cell. ... [Pg.465]

The potentiometric determination of an analyte s concentration is one of the most common quantitative analytical techniques. Perhaps the most frequently employed, routine quantitative measurement is the potentiometric determination of a solution s pH, a technique considered in more detail in the following discussion. Other areas in which potentiometric applications are important include clinical chemistry, environmental chemistry, and potentiometric titrations. Before considering these applications, however, we must first examine more closely the relationship between cell potential and the analyte s concentration, as well as methods for standardizing potentiometric measurements. [Pg.485]

Most scanning electrochemical microscopy (SECM) experiments are conducted in the amperometric mode, yet microelectrodes have for many years been used as potentiometric devices. Not surprisingly, several SECM articles have described how the tip operated in the potentiometric mode. In this chapter we aim to present the background necessary to understand the differences between amperometric and potentiometric SECM applications. Since many aspects of SECM are covered elsewhere in this monograph, we have focused on the progress made in the held of potentiometric microelectrodes and presented it in the context of SECM experiments. Starting with an historical perspective, the key discoveries that facilitated the development and applications of micro potentiometric probes are highlighted. Fabrication techniques and recipes are reviewed. Basic theoretical principles are covered as well as properties and technical operational details. In the second half of the chapter, SECM potentiometric applications are discussed. There the differences between the conventional amperometric mode are developed and emphasized. [Pg.397]

In the following sections we consider several potentiometric applications. Many articles do not refer directly to scanning electrochemical microscopy, but all are closely related to the SECM principles and were therefore included in the present chapter. We have not included a section on applications related to potentiometric probing of biological substrates since they are covered in Chapter 11 of this volume. [Pg.435]

As in amperometric applications, many experiments can be conducted in the close proximity mode where the tip is moved very close to the substrate surface and a perturbation is applied to the sample. This perturbation may take several forms, typically potentiostatic or galvanostatic excursions if the sample is acting as an electrode, but also optical illumination with a laser beam, change of solution, etc. The tip response is then recorded as a function of time following the application of the perturbation. In these conditions potentiometric detection offers two advantages over amperometric detection (1) the range of ions detectable is extended to nonelectroactive species such as alkali metals, and (2) the tip response is selective. There are, however, some drawbacks. Because of the high impedance of the electrometer, the response time is worse in potentiometric applications where the t90 is rarely below 30 s. This must be compared to the millisecond time scale available with amperometric responses (89). Ohmic drop may also affect the tip potential. [Pg.438]

The following experiments may he used to illustrate the application of titrimetry to quantitative, qtmlitative, or characterization problems. Experiments are grouped into four categories based on the type of reaction (acid-base, complexation, redox, and precipitation). A brief description is included with each experiment providing details such as the type of sample analyzed, the method for locating end points, or the analysis of data. Additional experiments emphasizing potentiometric electrodes are found in Chapter 11. [Pg.358]

One important application of amperometry is in the construction of chemical sensors. One of the first amperometric sensors to be developed was for dissolved O2 in blood, which was developed in 1956 by L. C. Clark. The design of the amperometric sensor is shown in Figure 11.38 and is similar to potentiometric membrane electrodes. A gas-permeable membrane is stretched across the end of the sensor and is separated from the working and counter electrodes by a thin solution of KCl. The working electrode is a Pt disk cathode, and an Ag ring anode is the... [Pg.519]

The following set of experiments illustrate several applications of potentiometric electrodes. [Pg.534]

In cases where it proves impossible to find a suitable indicator (and this will occur when dealing with strongly coloured solutions) then titration may be possible by an electrometric method such as conductimetric, potentiometric or amperometric titration see Chapters 13-16. In some instances, spectrophotometric titration (Chapter 17) may be feasible. It should also be noted that ifit is possible to work in a non-aqueous solution rather than in water, then acidic and basic properties may be altered according to the solvent chosen, and titrations which are difficult in aqueous solution may then become easy to perform. This procedure is widely used for the analysis of organic materials but is of very limited application with inorganic substances and is discussed in Sections 10.19-10.21. [Pg.281]

C. Potentiometric methods. This is a procedure which depends upon measurement of the e.m.f. between a reference electrode and an indicator (redox) electrode at suitable intervals during the titration, i.e. a potentiometric titration is carried out. The procedure is discussed fully in Chapter 15 let it suffice at this stage to point out that the procedure is applicable not only to those cases where suitable indicators are available, but also to those cases, e.g. coloured or very dilute solutions, where the indicator method is inapplicable, or of limited accuracy. [Pg.368]

In electro-gravimetric analysis the element to be determined is deposited electroly tically upon a suitable electrode. Filtration is not required, and provided the experimental conditions are carefully controlled, the co-deposition of two metals can often be avoided. Although this procedure has to a large extent been superseded by potentiometric methods based upon the use of ion-selective electrodes (see Chapter 15), the method, when applicable has many advantages. The theory of the process is briefly discussed below in order to understand how and when it may be applied for a more detailed treatment see Refs 1-9. [Pg.503]

The relative change of conductance of the solution during the reaction and upon the addition of an excess of reagent largely determines the accuracy of the titration under optimum conditions this is about 0.5 per cent. Large amounts of foreign electrolytes, which do not take part in the reaction, must be absent, since these have a considerable effect upon the accuracy. In consequence, the conductimetric method has much more limited application than visual, potentiometric, or amperometric procedures. [Pg.523]

The following general instructions are applicable to most potentiometric... [Pg.580]

Among potentiometric methods of analysis that are important for ecological applications, the one most widely used is that of pH measurements with an indicator electrode whose potential is a function of the hydrogen ion concentration. More recently, ion-selective electrodes reversible to other cations such as those of heavy metals have become available. [Pg.407]

The remarkable selectivity that is inherent in the reaction of an antibody with the antigen or hapten against which it was raised is the basis for the extensive use of immunoassay for the rapid analysis of samples in clinical chemistry. Immunochemical reactions offer a means by which the applicability of potentiometric techniques can be broadened. A number of strategies for incorporating immunoassay into the methodology of potentiometry have been explored... [Pg.14]

Other important alternate electrochemical methods under study for pCO rely on measuring current associated with the direct reduction of CO. The electrochemistry of COj in both aqueous and non-aqueous media has been documented for some time 27-29) interferences from more easily reduced species such as O2 as well as many commonly used inhalation anesthetics have made the direct amperometric approach difficult to implement. One recently described attempt to circumvent some of these interference problems employs a two cathode configuration in which one electrode is used to scrub the sample of O by exhaustive reduction prior to COj amperometry at the second electrode. The response time and sensitivity of the approach may prove to be adequate for blood ps applications, but the issue of interfering anesthetics must be addressed more thorou ly in order to make the technique a truly viable alternative to the presently used indirect potentiometric electrode. [Pg.55]

SECM employs a mobile UME tip (Fig. 3) to probe the properties of a target interface. Although both amperometric and potentiometric electrodes have found application in SECM, amperometry - in which a target species is consumed or generated at the probe UME - has found the most widespread use in kinetic studies at liquid interfaces, as... [Pg.293]

In scanning electrochemical microscopy (SECM) a microelectrode probe (tip) is used to examine solid-liquid and liquid-liquid interfaces. SECM can provide information about the chemical nature, reactivity, and topography of phase boundaries. The earlier SECM experiments employed microdisk metal electrodes as amperometric probes [29]. This limited the applicability of the SECM to studies of processes involving electroactive (i.e., either oxidizable or reducible) species. One can apply SECM to studies of processes involving electroinactive species by using potentiometric tips [36]. However, potentio-metric tips are suitable only for collection mode measurements, whereas the amperometric feedback mode has been used for most quantitative SECM applications. [Pg.397]


See other pages where Potentiometric applications is mentioned: [Pg.224]    [Pg.24]    [Pg.120]    [Pg.310]    [Pg.326]    [Pg.276]    [Pg.224]    [Pg.24]    [Pg.120]    [Pg.310]    [Pg.326]    [Pg.276]    [Pg.38]    [Pg.276]    [Pg.153]    [Pg.410]    [Pg.460]    [Pg.79]    [Pg.127]    [Pg.140]    [Pg.151]    [Pg.161]    [Pg.171]    [Pg.172]    [Pg.190]    [Pg.196]    [Pg.452]    [Pg.163]    [Pg.161]    [Pg.336]    [Pg.338]    [Pg.67]    [Pg.522]   
See also in sourсe #XX -- [ Pg.2 , Pg.387 ]




SEARCH



PVC Application and Properties in Construction of Potentiometric Sensors for Drug Detection

Potentiometric

Potentiometric electrodes, applications

Potentiometric probes applications

Potentiometric titrations application

Quantitative applications using potentiometric titrations

© 2024 chempedia.info