Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cations with compound

Formation of pyranoanthocyanins through reaction of flavylium cations with compounds possessing a polarizable double bond, namely vinylphenol derivatives (including vinylflavanols and hydroxycinnamic acids) and enolizable aldehydes and ketones (e.g., acetaldehyde and pyruvic acid). [Pg.300]

Recent experiments revealed dependence between the rate of the racemization process and the concentration of the silyllithium compound 2 in solution. Due to decomposition the reaction rate cannot be determined exactly, but it is not simply first or second order. We believe that a solvated lithium cation plays an important role in the inversion process of 2. Thus, this process can be described by the interaction of the solvated lithium cation with compound 2 (model system 4). [Pg.169]

These compounds are present in almost all mam malian cells where they are believed to be involved in cell differentiation and proliferation Because each ni trogen of a polyamine is protonated at physiological pH (7 4) putrescine spermidine and spermine exist as cations with a charge of + 2 +3 and + 4 respectively... [Pg.925]

Modifiers in glass are compounds that tend to donate anions to the network, whereas the cations occupy "holes" in the disordered stmcture. These conditions cause the formation of nonbridging anions, or anions that are connected to only one network-forming cation, as shown in Figure 2. Modifier compounds usually contain cations with low charge-to-radius ratios (Z/r), such as alkali or alkaline-earth ions. [Pg.331]

So far, as in Equation (3.33), the hydrolyses of ATP and other high-energy phosphates have been portrayed as simple processes. The situation in a real biological system is far more complex, owing to the operation of several ionic equilibria. First, ATP, ADP, and the other species in Table 3.3 can exist in several different ionization states that must be accounted for in any quantitative analysis. Second, phosphate compounds bind a variety of divalent and monovalent cations with substantial affinity, and the various metal complexes must also be considered in such analyses. Consideration of these special cases makes the quantitative analysis far more realistic. The importance of these multiple equilibria in group transfer reactions is illustrated for the hydrolysis of ATP, but the principles and methods presented are general and can be applied to any similar hydrolysis reaction. [Pg.77]

The ionization constant of a typical heterocyclic compound (e.g., quinoline) designates the equilibrium involving a proton, a neutral molecule and its cation. With quinazoline, however, two distinct species (hydrated and anhydrous) are involved each of which is in equilibrium with its cation, and can be represented as in the reaction scheme, (7), (8), (3), and (4). [Pg.259]

The mechanism of the cycloaddition reaction of benzaldehyde 2a with Danishefsky s diene 3a catalyzed by aluminum complexes has been investigated theoretically using semi-empirical calculations [14]. It was found that the reaction proceeds as a step-wise cycloaddition reaction with the first step being a nucleophilic-like attack of Danishefsky s diene 2a on the coordinated carbonyl compound leading to an aldol-like intermediate which is stabilized by interaction of the cation with the oxygen atom of the Lewis acid. The next step is the ring-closure step, giving the cycloaddition product. [Pg.159]

In contrast, we never use Roman numerals with compounds of the Group 1 or Group 2 metals they always form cations with charges of +1 or +2, respectively. [Pg.41]

Effective precipitators are relatively weak acids, such as Co2+, Ni2+, Cu2+, Zn2+ etc. Such precipitators were ranked by Pirson to form a contiguous group of cations [65]. However, in order to synthesize compounds of either Mn(TaF6)2 or Mn(NbF6)2 type, it is necessary either to use cations with a higher acidity or anhydrous hydrogen fluoride, HF [64]. [Pg.20]

MiNbC F compounds have a NaC 1-type structure, and are stable only in the case of lithium due to the steric similarity between the lithium ion and Nb3. In the case of other alkali metal cations with larger ionic diameters, the M4Nb04F compounds decompose yielding orthoniobates and simple fluorides of alkali metals, as follows ... [Pg.31]

The variation that exists in the 0 F ratio of MMe6Oi5F-type compounds enables isomorphic replacement of alkali metal cations by other cations with appropriate radii. For instance, a copper-containing compound, Cuo.6Nb6Oi4 6F( 4, which crystallizes in a LiNbeOisF type structure, was obtained [255]. [Pg.108]

The formulated principals correlating crystal structure features with the X Nb(Ta) ratio do not take into account the impact of the second cation. Nevertheless, substitution of a second cation in compounds of similar types can change the character of the bonds within complex ions. Specifically, the decrease in the ionic radius of the second (outer-sphere) cation leads not only to a decrease in its coordination number but also to a decrease in the ionic bond component of the complex [277]. [Pg.116]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

With regard to the mechanism of these Pd°-catalyzed reactions, little is known in addition to what is shown in Scheme 10-62. In our opinion, the much higher yields with diazonium tetrafluoroborates compared with the chlorides and bromides, and the low yields and diazo tar formation in the one-pot method using arylamines and tert-butyl nitrites (Kikukawa et al., 1981 a) indicate a heterolytic mechanism for reactions under optimal conditions. The arylpalladium compound is probably a tetra-fluoroborate salt of the cation Ar-Pd+, which dissociates into Ar+ +Pd° before or after addition to the alkene. An aryldiazenido complex of Pd(PPh3)3 (10.25) was obtained together with its dediazoniation product, the corresponding arylpalladium complex 10.26, in the reaction of Scheme 10-64 by Yamashita et al. (1980). Aryldiazenido complexes with compounds of transition metals other than Pd are discussed in the context of metal complexes with diazo compounds (Zollinger, 1995, Sec. 10.1). [Pg.253]

Ionic compounds are named by starting with the name of the cation (with its oxidation number if more than one charge is possible), followed by the name of the anion hydrates are named by adding the word hydrate, preceded by a Greek prefix indicating the number of water molecules in the formula unit. [Pg.57]

Formation constants for complex species of mono-, di-, and trialkytin(rV) cations with some nucleotide-5 -monophosphates (AMP, LIMP, IMP, and GMP) are reported by De Stefano et al. The investigation was performed in the light of speciation of organometallic compounds in natural fluids (I = 0.16-1 moldm ). As expected, owing to the strong tendency of organotin(IV) cations to hydrolysis (as already was pointed above) in aqueous solution, the main species formed in the pH-range of interest of natural fluids are the hydrolytic ones. ... [Pg.384]

This survey of the literature data on the interactions of organotin(IV) cations with biologically active ligands demonstrates that this is still a very open field. Above all, it is necessary to emphasize that usage of such complexes to treat humans is not permitted at present. Consequently, all compounds examined and discussed here (although with promising anticancer activity) are in the exploratory research stage. [Pg.431]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

Ionic interactions have been used to prepare lanthanide-core dendrimers. This has been achieved using a convergent synthesis, in which polyether den-drons with a carboxylic acid group at the focal point were assembled around a lanathanide cation. This involved a metathetical reaction with compounds such as Er(OAc)3, Tb(OAc)3 or Eu(OAc)3 to introduce the appropriate lanthanide ion. [Pg.136]

Abstract Molecular spectroscopy is one of the most important means to characterize the various species in solid, hquid and gaseous elemental sulfur. In this chapter the vibrational, UV-Vis and mass spectra of sulfur molecules with between 2 and 20 atoms are critically reviewed together with the spectra of liquid sulfur and of solid allotropes including polymeric and high-pressure phases. In particular, low temperature Raman spectroscopy is a suitable technique to identify single species in mixtures. In mass spectra cluster cations with up to 56 atoms have been observed but fragmentation processes cause serious difficulties. The UV-Vis spectra of S4 are reassigned. The modern XANES spectroscopy has just started to be applied to sulfur allotropes and other sulfur compounds. [Pg.31]

A more reactive cationic dimethyl tantalum derivative is produced from Ta(OEP)Me3 using one equivalent of the weak acid HNMe2Ph BPh4]. I Ta(OEP)Me2] reacts cleanly with CO to produce a cationic enediolate compound, containing the MeC(0 )==C(0 )Me ligand which results from both insertion and... [Pg.241]

Their precursors must be the tricarbonyl o-allenyls with the uncoordinated C=C bonds. Neither an allylic rearrangement nor cis-trans isomerization has been observed in the reaction of CpMo(CO)3(cw-CH2CH=CHMe) with PPhj, the product being CpMo(CO)2(PPh3)(cw-COCH2CH=CHMe) (81). The interesting reaction leading to the formation of cationic carbene compounds was mentioned earlier [Eq. (17) and Section V] (78). [Pg.120]

These studies show that the thiospinel structure is quite flexible with opportunity for cation vacancies at the 8 a site. Our investigation on such cation-deficient thiospinels is significant in that it shows that additional vacancies are possible in the 8 a site. Most of the cation-deficient compounds known earlier (predominantly copper compounds) were obtained by extraction of Cu by using various oxidizing reagents. These studies show that such cation-deficient quaternary thiospinels can also be obtained by direct solid-state reactions. [Pg.235]


See other pages where Cations with compound is mentioned: [Pg.67]    [Pg.178]    [Pg.67]    [Pg.178]    [Pg.285]    [Pg.179]    [Pg.23]    [Pg.466]    [Pg.378]    [Pg.136]    [Pg.128]    [Pg.22]    [Pg.116]    [Pg.247]    [Pg.805]    [Pg.1193]    [Pg.24]    [Pg.39]    [Pg.120]    [Pg.94]    [Pg.186]    [Pg.431]    [Pg.87]    [Pg.29]    [Pg.40]    [Pg.229]    [Pg.345]    [Pg.105]   
See also in sourсe #XX -- [ Pg.934 ]




SEARCH



Bromine complex compounds cations, with pyridine

Cations with

Chromium complex compounds cations, with

Copper complex compounds cations, with di-2-pyridylamine

Iron complex compounds cations, with pyridine

Platinum complex compounds cations, with ethylenediamine

Rhenium complex compounds cations, with

Silicon compounds, cationic chelates cations, with 2,4-pentanedione

Silver complex compounds, cations with pyridine

© 2024 chempedia.info