Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic initiators vinyl ether polymerization

Substituted olefins that are capable of forming secondary or tertiary carbo-nium ion intermediates polymerize well by cationic initiation, but are polymerized with difficulty or not at all free radically. In general, vinyl or /-alkenes that contain electron donating groups (alkyl, ether, etc) polymerize well via a carbo-cationic mechanism. [Pg.23]

As represented above the initiation of vinyl ether polymerization by trityl salts involves reaction of the olefin with the aliphatic carbon atom. It is worth noting, however, that Magee, Winstein, and Heck (18) have shown previously that trityl cation reacts with the related olefin (CH3)2C=C(OCH3)2 exclusively in the 4-position of one of the aromatic rings ... [Pg.338]

Initiation with Triphenylmethyl Cation. When tetrahydrofuran (THF) is used to dissolve triphenylmethyl hexachlorantimonate at room temperature, there is almost immediate decomposition of the triphenylmethyl cation (6). On the other hand, solutions of the trityl salt in THF can be prepared and stored as deep yellow solutions if maintained at temperatures around — 80°C. At room temperature the initial decoloration of the catalyst is followed rapidly by polymerization of the monomer to poly(tetramethylene oxide), and the actual percentage conversion depends markedly on the temperature. This behavior is typical of systems exhibiting monomer-polymer equilibria (28), and Table III shows values for the equilibrium conversion of monomeric THF to polymeric THF obtained with a variety of catalysts. As for vinyl ether polymerization, it is most convenient to use the trityl hexachlorantimonate salt however, recourse to Table III shows clearly that above room temperature this anion yields less than the expected equilibrium conversion monomer... [Pg.340]

In the cationic-initiated polymerization of alkyl vinyl ethers it is possible to exercise fairly rigorous control of the configuration of the product by appropriate choice of the monomer and conditions. For example, isobutyl vinyl ether polymerized by BF3 etherate at 195 K in toluene can give isotactic polymer [15]. In this low polarity solvent, close association of the gegen ion with the cationic propagating center helps to block one mode of entry of fresh monomer (Eq. 22.45). [Pg.731]

The relatively recent development of electrochemical methods for the synthesis of stable cation-radical salts, such as the perylene (18a) and 9,10-diphenylanthracene (18b) cation-radicals has permitted their use as initiators for vinyl ether polymerizations. [Pg.173]

A second type of uv curing chemistry is used, employing cationic curing as opposed to free-radical polymerization. This technology uses vinyl ethers and epoxy resins for the oligomers, reactive resins, and monomers. The initiators form Lewis acids upon absorption of the uv energy and the acid causes cationic polymerization. Although this chemistry has improved adhesion and flexibility and offers lower viscosity compared to the typical acrylate system, the cationic chemistry is very sensitive to humidity conditions and amine contamination. Both chemistries are used commercially. [Pg.248]

Complexation of the initiator and/or modification with cocatalysts or activators affords greater polymerization activity (11). Many of the patented processes for commercially available polymers such as poly(MVE) employ BE etherate (12), although vinyl ethers can be polymerized with a variety of acidic compounds, even those unable to initiate other cationic polymerizations of less reactive monomers such as isobutene. Examples are protonic acids (13), Ziegler-Natta catalysts (14), and actinic radiation (15,16). [Pg.514]

Cationic polymerization in hot melts has been applied to epoxidized polymers [38,39]. No hot melts based on vinyl ether or other cation-sensitive functionalized polymers have been described in the literature. With cationic systems, it is important that the other ingredients in the adhesive be of low basicity to avoid scavenging the initiating acid generated by the photoinitiator. [Pg.736]

Indeed, cumyl carbocations are known to be effective initiators of IB polymerization, while the p-substituted benzyl cation is expected to react effectively with IB (p-methylstyrene and IB form a nearly ideal copolymerization system ). Severe disparity between the reactivities of the vinyl and cumyl ether groups of the inimer would result in either linear polymers or branched polymers with much lower MW than predicted for an in/mcr-mediated living polymerization. Styrene was subsequently blocked from the tert-chloride chain ends of high-MW DIB, activated by excess TiCU (Scheme 7.2). [Pg.202]

The addition of a cation to an olefin to produce a carbonium ion or ion pair need not end there but may go through many cycles of olefin addition before the chain is eventually terminated by neutralization of the end carbonium ion. Simple addition to the double bond is essentially the same reaction stopped at the end of the first cycle. The addition of mineral acids to produce alkyl halides or sulfates, for example, may be prolonged into a polymerization reaction. However, simple addition or dimerization is the usual result with olefins and hydrogen acids. The polymerization which occurs with a-methyl-styrene and sulfuric acid or styrene and hydrochloric acid at low temperatures in polar solvents is exceptional.291 Polymerization may also be initiated by a carbonium ion formed by the dissociation of an alkyl halide as in the reaction of octyl vinyl ether with trityl chloride in ionizing solvents.292... [Pg.152]

However, Bawn et al., take the view that when polymerization of an alkyl vinyl ether is initiated by a stable ion, such as tropylium, the initiation involves electron abstraction from the monomer with formation of a radical cation and a tropyl radical [52] ... [Pg.129]

Postpolymerization of difunctional monomers to effect star branching has been successfully applied in cationic polymerization, e.g. in the case of polyisobutylene initiated with 2-chloro-2,4,4,-trimethylpentane/TiCl4. Addition of divinylbenzene leads to star polymers [104], Vinyl ethers, when polymerized with HI/ZnI2 in toluene at — 40°C, can be copolymerized with divinylether... [Pg.83]

The cationic polymerization of vinyl isobutyl ether at —40°C produces stereoregular polymers (structure 5.21). The carbocations of vinyl alkyl ethers are stabilized by the delocalization of p valence electrons in the oxygen atom, and thus these monomers are readily polymerized by cationic initiators. Poly(vinyl isobutyl ether) has a low Tg because of the steric hindrance offered by the isobutyl group. It is used as an adhesive and an impregnating resin. [Pg.140]

Thus monomers such as isobutylene, styrene, methyl vinyl ether, and isoprene undergo polymerization by cationic initiators. The effect of alkyl groups in facilitating cationic polymerization is weak, and it is only the 1,1-dialkyl alkenes that undergo cationic polymerization. [Pg.201]


See other pages where Cationic initiators vinyl ether polymerization is mentioned: [Pg.397]    [Pg.79]    [Pg.65]    [Pg.250]    [Pg.305]    [Pg.317]    [Pg.461]    [Pg.159]    [Pg.160]    [Pg.907]    [Pg.172]    [Pg.86]    [Pg.132]    [Pg.245]    [Pg.246]    [Pg.135]    [Pg.320]    [Pg.64]    [Pg.91]    [Pg.223]    [Pg.214]    [Pg.34]    [Pg.114]    [Pg.132]    [Pg.199]    [Pg.4]    [Pg.38]    [Pg.108]    [Pg.133]    [Pg.296]    [Pg.221]    [Pg.661]    [Pg.207]    [Pg.230]    [Pg.39]   
See also in sourсe #XX -- [ Pg.239 , Pg.241 ]




SEARCH



Cation initiating

Cation-pool Initiated Polymerization of Vinyl Ethers Using a Microflow System

Cationic initiation

Cationic initiators

Cationic polymerization

Cationic polymerization ethers

Cationic polymerization initiation

Cationic polymerization polymerizations

Cationic polymerization vinyl ethers

Cationic vinyl ether

Cationic-initiated polymerization

Initiator cationic polymerization

Initiator polymeric

Polymerization vinylic

Vinyl cations

Vinyl ether cations

Vinyl ethers, polymerization

Vinyl ethers, “cation pool polymerization initiator

Vinyl polymerization

Vinylic cations

© 2024 chempedia.info