Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catholyte

Small amounts of propionitrile and bis(cyanoethyl) ether are formed as by-products. The hydrogen ions are formed from water at the anode and pass to the cathode through a membrane. The catholyte that is continuously recirculated in the cell consists of a mixture of acrylonitrile, water, and a tetraalkylammonium salt the anolyte is recirculated aqueous sulfuric acid. A quantity of catholyte is continuously removed for recovery of adiponitrile and unreacted acrylonitrile the latter is fed back to the catholyte with fresh acrylonitrile. Oxygen that is produced at the anodes is vented and water is added to the circulating anolyte to replace the water that is lost through electrolysis. The operating temperature of the cell is ca 50—60°C. Current densities are 0.25-1.5 A/cm (see Electrochemical processing). [Pg.221]

A typical composition of the catholyte is adiponitrile, 15 wt % acrylonitrile, 15 wt % quaternary ammonium salt, 39 wt % water, 29 wt % and by-products, 2 wt %. Such a solution is extracted with acrylonitrile and water, which separates the organics from the salt that can be returned to the cell. [Pg.221]

Separation of the anode and cathode products in diaphragm cells is achieved by using asbestos [1332-21 -4] or polymer-modified asbestos composite, or Polyramix deposited on a foraminous cathode. In membrane cells, on the other hand, an ion-exchange membrane is used as a separator. Anolyte—catholyte separation is realized in the diaphragm and membrane cells using separators and ion-exchange membranes, respectively. The mercury cells contain no diaphragm the mercury [7439-97-6] itself acts as a separator. [Pg.482]

The catholyte from diaphragm cells typically analyzes as 9—12% NaOH and 14—16% NaCl. This ceUHquor is concentrated to 50% NaOH in a series of steps primarily involving three or four evaporators. Membrane cells, on the other hand, produce 30—35% NaOH which is evaporated in a single stage to produce 50% NaOH. Seventy percent caustic containing very Httie salt is made directiy in mercury cell production by reaction of the sodium amalgam from the electrolytic cells with water in denuders. [Pg.482]

Fig. 25. OxyTech MGC electroly2er a, membrane b, anode assembly c, manifold spacer d, anolyte outlet e, catholyte outlet f, bulkhead g, brine inlet h, NaOH inlet i, insulating channel j, bulkhead insulator k, interface material 1, cathode assembly m, interceU bus n, tie rod o, current distributor p,... Fig. 25. OxyTech MGC electroly2er a, membrane b, anode assembly c, manifold spacer d, anolyte outlet e, catholyte outlet f, bulkhead g, brine inlet h, NaOH inlet i, insulating channel j, bulkhead insulator k, interface material 1, cathode assembly m, interceU bus n, tie rod o, current distributor p,...
Most of the voltage savings in the air cathode electrolyzer results from the change in the cathode reaction and a reduction in the solution ohmic drop as a result of the absence of the hydrogen bubble gas void fraction in the catholyte. The air cathode electrolyzer operates at 2.1 V at 3 kA/m or approximately 1450 d-c kW-h per ton of NaOH. The air cathode technology has been demonstrated in commercial sized equipment at Occidental Chemical s Muscle Shoals, Alabama plant. However, it is not presentiy being practiced because the technology is too expensive to commercialize at power costs of 20 to 30 mils (1 mil = 0.1 /kW). [Pg.500]

The low current efficiency of this process results from the evolution of hydrogen at the cathode. This occurs because the hydrogen deposition overvoltage on chromium is significantly more positive than that at which chromous ion deposition would be expected to commence. Hydrogen evolution at the cathode surface also increases the pH of the catholyte beyond 4, which may result in the precipitation of Cr(OH)2 and Cr(OH)2, causing a partial passivation of the cathode and a reduction in current efficiency. The latter is also inherently low, as six electrons are required to reduce hexavalent ions to chromium metal. [Pg.119]

A newer technology for the manufacture of chromic acid uses ion-exchange (qv) membranes, similar to those used in the production of chlorine and caustic soda from brine (76) (see Alkali and cm ORiNE products Chemicals frombrine Mep rane technology). Sodium dichromate crystals obtained from the carbon dioxide option of Figure 2 are redissolved and sent to the anolyte compartment of the electrolytic ceU. Water is loaded into the catholyte compartment, and the ion-exchange membrane separates the catholyte from the anolyte (see Electrochemical processing). [Pg.138]

When a potential is appHed across the ceU, the sodum and other cations are transported across the membrane to the catholyte compartment. Sodium hydroxide is formed in the catholyte compartment, because of the rise in pH caused by the reduction of water. Any polyvalent cations are precipitated and removed. The purified NaOH may be combined with the sodium bicarbonate from the sodium dichromate process to produce soda ash for the roasting operation. In the anolyte compartment, the pH falls because of the oxidation of water. The increase in acidity results in the formation of chromic acid. When an appropriate concentration of the acid is obtained, the Hquid from the anolyte is sent to the crystallizer, the crystals are removed, and the mother Hquor is recycled to the anolyte compartment of the ceU. The electrolysis is not allowed to completely convert sodium dichromate to chromic acid (76). Patents have been granted for more electrolytic membrane processes for chromic acid and dichromates manufacture (86). [Pg.138]

A.sahi Chemical EHD Processes. In the late 1960s, Asahi Chemical Industries in Japan developed an alternative electrolyte system for the electroreductive coupling of acrylonitrile. The catholyte in the Asahi divided cell process consisted of an emulsion of acrylonitrile and electrolysis products in a 10% aqueous solution of tetraethyl ammonium sulfate. The concentration of acrylonitrile in the aqueous phase for the original Monsanto process was 15—20 wt %, but the Asahi process uses only about 2 wt %. Asahi claims simpler separation and purification of the adiponitrile from the catholyte. A cation-exchange membrane is employed with dilute sulfuric acid in the anode compartment. The cathode is lead containing 6% antimony, and the anode is the same alloy but also contains 0.7% silver (45). The current efficiency is of 88—89%, with an adiponitrile selectivity of 91%. This process, started by Asahi in 1971, at Nobeoka City, Japan, is also operated by the RhcJ)ne Poulenc subsidiary, Rhodia, in Bra2il under Hcense from Asahi. [Pg.101]

A simple electrochemical flow-through cell with powder carbon as cathodic material was used and optimized. The influence of the generation current, concentration of the catholyte, carrier stream, flow rate of the sample and interferences by other metals on the generation of hydrogen arsenide were studied. This system requires only a small sample volume and is very easily automatized. The electrochemical HG technique combined with AAS is a well-established method for achieving the required high sensitivity and low detection limits. [Pg.135]

Standard two-compartment H cell. The catholyte consisted of 3.25 M nitric acid and was separated by a medium-porosity sintered glass frit. Experiments were also carried out to determine if surface oxidation of hydrocarbon polymers could be obtained in an electrolyte consisting only of nitric acid. [Pg.309]

The electrolysis is carried out at a reference potential of -2.4 volts vs a standard calomel electrode. An initial current density of 0.0403 amp/cm is obtained which drops to 0.0195 amp/cm at the end of the reduction, which is carried on over a period of 1,682 minutes at 15° to 20°C. The catholyte is filtered, the solid material is washed with water and dried. 430 g of the 2,3-bis-(3-pyridyl)-butane-2,3-diol is recrystallized from water, MP 244° to 245°C. [Pg.1013]

A similar situation arises when a vertical metal plate is partly immersed in an electrolyte solution (Fig. 1.48c), and owing to differential aeration the upper area of the plate will become cathodic and the lower area anodic. With time the anodic area extends upwards owing to the mixing of the anolyte and catholyte by convection and by the neutralisation of the alkali by absorption of atmospheric carbon dioxide. [Pg.160]

Severe attack frequently occurs at a water-line, which in practice can range from structural steel partly immersed in a natural water to a lacquered tin can used for containing emulsion paint. This can be illustrated by adding increeising amounts of sodium carbonate to a sodium chloride solution in which a steel plate is partly immersed (Fig. 1.48c, d and e). With increase in concentration of the inhibitor, attack decreases and becomes confined to the water-line. The attack at the water-line is intense and is characterised by a triangular pasty mass of corrosion products bounded on the upper surface by a dark-brown membrane that follows the contour of the water-line. The mechanism of water-line attack is not clear, but it is likely that the membrane of corrosion products results in the formation of an occluded cell, in which the anolyte and catholyte are prevented from mixing. These occluded cells are discussed in more detail subsequently. [Pg.160]

Thus if the cathodic and anodic sites are separated from one another by the geometry of the system and if the solution is relatively stagnant the pH of the anolyte will decrease whereas that of the catholyte will increase. [Pg.161]


See other pages where Catholyte is mentioned: [Pg.483]    [Pg.488]    [Pg.489]    [Pg.491]    [Pg.493]    [Pg.494]    [Pg.495]    [Pg.499]    [Pg.502]    [Pg.495]    [Pg.495]    [Pg.175]    [Pg.196]    [Pg.537]    [Pg.537]    [Pg.117]    [Pg.118]    [Pg.118]    [Pg.118]    [Pg.118]    [Pg.118]    [Pg.118]    [Pg.70]    [Pg.74]    [Pg.75]    [Pg.87]    [Pg.87]    [Pg.88]    [Pg.91]    [Pg.99]    [Pg.99]    [Pg.103]    [Pg.169]    [Pg.798]    [Pg.239]   
See also in sourсe #XX -- [ Pg.428 ]

See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.184 ]

See also in sourсe #XX -- [ Pg.428 ]

See also in sourсe #XX -- [ Pg.191 , Pg.194 , Pg.289 , Pg.290 , Pg.294 , Pg.311 , Pg.313 , Pg.315 , Pg.317 , Pg.318 , Pg.321 , Pg.517 , Pg.518 , Pg.525 , Pg.529 ]

See also in sourсe #XX -- [ Pg.428 ]

See also in sourсe #XX -- [ Pg.66 ]

See also in sourсe #XX -- [ Pg.685 ]

See also in sourсe #XX -- [ Pg.779 , Pg.815 , Pg.831 ]

See also in sourсe #XX -- [ Pg.246 , Pg.249 ]

See also in sourсe #XX -- [ Pg.488 ]

See also in sourсe #XX -- [ Pg.278 ]

See also in sourсe #XX -- [ Pg.561 ]

See also in sourсe #XX -- [ Pg.56 ]

See also in sourсe #XX -- [ Pg.3 , Pg.27 , Pg.28 , Pg.29 , Pg.32 , Pg.38 ]

See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Cathode catholyte

Catholyte NaOH concentration, NaCl

Catholyte efficiency

Catholyte quality

Catholyte transport number

Sodium ions catholyte concentration

Two-chamber reactors with soluble catholytes or poised potentials

© 2024 chempedia.info