Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catecholamines enzymic

Identification, isolation, and removal of (polyhydroxy)benzenes from the environment have received increased attention throughout the 1980s and 1990s. The biochemical activity of the benzenepolyols is at least in part based on thek oxidation—reduction potential. Many biochemical studies of these compounds have been made, eg, of enzymic glycoside formation, enzymic hydroxylation and oxidation, biological interactions with biochemically important compounds such as the catecholamines, and humic acid formation. The range of biochemical function of these compounds and thek derivatives is not yet fully understood. [Pg.375]

L-Tyrosine metabohsm and catecholamine biosynthesis occur largely in the brain, central nervous tissue, and endocrine system, which have large pools of L-ascorbic acid (128). Catecholamine, a neurotransmitter, is the precursor in the formation of dopamine, which is converted to noradrenaline and adrenaline. The precise role of ascorbic acid has not been completely understood. Ascorbic acid has important biochemical functions with various hydroxylase enzymes in steroid, dmg, andhpid metabohsm. The cytochrome P-450 oxidase catalyzes the conversion of cholesterol to bUe acids and the detoxification process of aromatic dmgs and other xenobiotics, eg, carcinogens, poUutants, and pesticides, in the body (129). The effects of L-ascorbic acid on histamine metabohsm related to scurvy and anaphylactic shock have been investigated (130). Another ceUular reaction involving ascorbic acid is the conversion of folate to tetrahydrofolate. Ascorbic acid has many biochemical functions which affect the immune system of the body (131). [Pg.21]

Catecholamine biosynthesis begins with the uptake of the amino acid tyrosine into the sympathetic neuronal cytoplasm, and conversion to DOPA by tyrosine hydroxylase. This enzyme is highly localized to the adrenal medulla, sympathetic nerves, and central adrenergic and dopaminergic nerves. Tyrosine hydroxylase activity is subject to feedback inhibition by its products DOPA, NE, and DA, and is the rate-limiting step in catecholamine synthesis the enzyme can be blocked by the competitive inhibitor a-methyl-/)-tyrosine (31). [Pg.357]

Two important pathways for catecholamine metaboHsm are 0-methylation by COMT, which is cytoplasmicaHy localized, and oxidative deamination by the mitochondrial localized enzyme MAO. There are large amounts of MAO in tissues such as the fiver and the heart which are responsible for the removal of most of the circulating monoamine, including some taken in from the diet. Tyramine is found in high concentrations in certain foods such as cheese, and in wine. Normally, this tyramine is deaminated in the fiver. However, if MAO is inhibited, the tyramine may then be converted into octopamine [104-14-37] which may indirecdy cause release of NE from nerve terminals to cause hypertensive crisis. Thus MAO, which is relatively nonspecific, plays an important role in the detoxification of pharmacologically active amines ingested from the diet. [Pg.358]

Together with dopamine, adrenaline and noradrenaline belong to the endogenous catecholamines that are synthesized from the precursor amino acid tyrosine (Fig. 1). In the first biosynthetic step, tyrosine hydroxylase generates l-DOPA which is further converted to dopamine by the aromatic L-amino acid decarboxylase ( Dopa decarboxylase). Dopamine is transported from the cytosol into synaptic vesicles by a vesicular monoamine transporter. In sympathetic nerves, vesicular dopamine (3-hydroxylase generates the neurotransmitter noradrenaline. In chromaffin cells of the adrenal medulla, approximately 80% of the noradrenaline is further converted into adrenaline by the enzyme phenylethanolamine-A-methyltransferase. [Pg.42]

The next two examples illustrate more complex surface reaction chemistry that brings about the covalent immobilization of bioactive species such as enzymes and catecholamines. Poly [bis (phenoxy)-phosphazene] (compound 1 ) can be used to coat particles of porous alumina with a high-surface-area film of the polymer (23). A scanning electron micrograph of the surface of a coated particle is shown in Fig. 3. The polymer surface is then nitrated and the arylnitro groups reduced to arylamino units. These then provided reactive sites for the immobilization of enzymes, as shown in Scheme III. [Pg.170]

Tyrosine is the immediate precursor of catecholamines, and tyrosine hydroxylase is the rate-limiting enzyme in catecholamine biosynthesis. Tyrosine hydroxylase is found in both soluble and particle-bound forms only in tissues that synthesize catecholamines it functions as an oxidoreductase, with tetrahydropteridine as a cofactor, to convert L-tyrosine to L-dihydroxyphenylalanine (L-dopa). [Pg.446]

As the rate-limiting enzyme, tyrosine hydroxylase is regulated in a variety of ways. The most important mechanism involves feedback inhibition by the catecholamines, which compete with the enzyme for the pteridine cofactor. Catecholamines cannot cross the blood-brain barrier hence, in the brain they must be synthesized locally. In certain central nervous system diseases (eg, Parkinson s disease), there is a local deficiency of dopamine synthesis. L-Dopa, the precursor of dopamine, readily crosses the blood-brain barrier and so is an important agent in the treatment of Parkinson s disease. [Pg.446]

Nagatsu T Genes for human catecholamine-synthesizing enzymes. Neurosci Res 1991 12 315. [Pg.455]

Dopamine (5-hydroxylase is a copper-containing enzyme involved in the synthesis of the catecholamines norepinephrine and epinephrine from tyrosine in the adrenal medulla and central nervous system. During hy-droxylation, the Cu+ is oxidized to Cu " reduction back... [Pg.495]

The general picture of muscle contraction in the heart resembles that of skeletal muscle. Cardiac muscle, like skeletal muscle, is striated and uses the actin-myosin-tropomyosin-troponin system described above. Unlike skeletal muscle, cardiac muscle exhibits intrinsic rhyth-micity, and individual myocytes communicate with each other because of its syncytial nature. The T tubular system is more developed in cardiac muscle, whereas the sarcoplasmic reticulum is less extensive and consequently the intracellular supply of Ca for contraction is less. Cardiac muscle thus relies on extracellular Ca for contraction if isolated cardiac muscle is deprived of Ca, it ceases to beat within approximately 1 minute, whereas skeletal muscle can continue to contract without an extraceUular source of Ca +. Cyclic AMP plays a more prominent role in cardiac than in skeletal muscle. It modulates intracellular levels of Ca through the activation of protein kinases these enzymes phosphorylate various transport proteins in the sarcolemma and sarcoplasmic reticulum and also in the troponin-tropomyosin regulatory complex, affecting intracellular levels of Ca or responses to it. There is a rough correlation between the phosphorylation of Tpl and the increased contraction of cardiac muscle induced by catecholamines. This may account for the inotropic effects (increased contractility) of P-adrenergic compounds on the heart. Some differences among skeletal, cardiac, and smooth muscle are summarized in... [Pg.566]

MTX caused a contraction of vascular smooth muscle and positive inotropic, positive chronotropic and arrhythmogenic effects on cardiac muscle. The effect of MTX was little affected by various receptor blockers, a Na channel blocker or a catecholamine depleting agent. Further, MTX had no effect on the enzymes which were related to Ca movements, such as Na , K -ATPase, cyclic AMP phosphodiesterase, and sarcoplasmic reticulum Ca -ATPase. These results would eliminate the possible involvement of an indirect action elicited by the release of chemical mediators and direct modifications of their receptors, Na channels, or various enzymes as a major mechanism of action of MTX. [Pg.142]

The turnover rate of a transmitter can be calculated from measurement of either the rate at which it is synthesised or the rate at which it is lost from the endogenous store. Transmitter synthesis can be monitored by administering [ H]- or [ " C]-labelled precursors in vivo these are eventually taken up by neurons and converted into radiolabelled product (the transmitter). The rate of accumulation of the radiolabelled transmitter can be used to estimate its synthesis rate. Obviously, the choice of precursor is determined by the rate-limiting step in the synthetic pathway for instance, when measuring catecholamine turnover, tyrosine must be used instead of /-DOPA which bypasses the rate-limiting enzyme, tyrosine hydroxylase. [Pg.82]

It is generally aeeepted that COMT is an extraeellular enzyme in the CNS that catalyses the transfer of methyl groups from S-adenylmethionine to the meta-hydroxy group of the eateehol nueleus. Until recently the only inhibitors of this enzyme were pyragallol and eateehol whieh were too toxic for clinical use. Now other inhibitors have been developed, e.g. entaeapone and tolcapone, but these are used mainly to protect dopa (also a catecholamine) from O-methylation, in the treatment of Parkinson s disease (Chapter 15). [Pg.142]

The pathway for synthesis of the catecholamines dopamine, noradrenaline and adrenaline, illustrated in Fig. 8.5, was first proposed by Hermann Blaschko in 1939 but was not confirmed until 30 years later. The amino acid /-tyrosine is the primary substrate for this pathway and its hydroxylation, by tyrosine hydroxylase (TH), to /-dihydroxyphenylalanine (/-DOPA) is followed by decarboxylation to form dopamine. These two steps take place in the cytoplasm of catecholaminereleasing neurons. Dopamine is then transported into the storage vesicles where the vesicle-bound enzyme, dopamine-p-hydroxylase (DpH), converts it to noradrenaline (see also Fig. 8.4). It is possible that /-phenylalanine can act as an alternative substrate for the pathway, being converted first to m-tyrosine and then to /-DOPA. TH can bring about both these reactions but the extent to which this happens in vivo is uncertain. In all catecholamine-releasing neurons, transmitter synthesis in the terminals greatly exceeds that in the cell bodies or axons and so it can be inferred... [Pg.167]

Because LCEC had its initial impact in neurochemical analysis, it is not, surprising that many of the early enzyme-linked electrochemical methods are of neurologically important enzymes. Many of the enzymes involved in catecholamine metabolism have been determined by electrochemical means. Phenylalanine hydroxylase activity has been determined by el trochemicaUy monitoring the conversion of tetrahydro-biopterin to dihydrobiopterin Another monooxygenase, tyrosine hydroxylase, has been determined by detecting the DOPA produced by the enzymatic reaction Formation of DOPA has also been monitored electrochemically to determine the activity of L-aromatic amino acid decarboxylase Other enzymes involved in catecholamine metabolism which have been determined electrochemically include dopamine-p-hydroxylase phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase . Electrochemical detection of DOPA has also been used to determine the activity of y-glutamyltranspeptidase The cytochrome P-450 enzyme system has been studied by observing the conversion of benzene to phenol and subsequently to hydroquinone and catechol... [Pg.29]

Sumi-Ichinose, C., Ichinose, H., Takahashi, E., Hori, T., and Nagatsu, T. (1992). Molecular-cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry 31 2229-2238. [Pg.86]

As previously mentioned, the cells of the adrenal medulla are considered modified sympathetic postganglionic neurons. Instead of a neurotransmitter, these cells release hormones into the blood. Approximately 20% of the hormonal output of the adrenal medulla is norepinephrine. The remaining 80% is epinephrine (EPI). Unlike true postganglionic neurons in the sympathetic system, the adrenal medulla contains an enzyme that methylates norepinephrine to form epinephrine. The synthesis of epinephrine, also known as adrenalin, is enhanced under conditions of stress. These two hormones released by the adrenal medulla are collectively referred to as the catecholamines. [Pg.99]

The primary mechanism used by cholinergic synapses is enzymatic degradation. Acetylcholinesterase hydrolyzes acetylcholine to its components choline and acetate it is one of the fastest acting enzymes in the body and acetylcholine removal occurs in less than 1 msec. The most important mechanism for removal of norepinephrine from the neuroeffector junction is the reuptake of this neurotransmitter into the sympathetic neuron that released it. Norepinephrine may then be metabolized intraneuronally by monoamine oxidase (MAO). The circulating catecholamines — epinephrine and norepinephrine — are inactivated by catechol-O-methyltransferase (COMT) in the liver. [Pg.99]

Figure 10.1 ThecyclicAMPsecondmessengersystem.Themostcommonsecond messenger system activated by the protein/peptide hormones and the catecholamines involves the formation of cAMP. This multistep process is initiated by binding of the hormone (the first messenger) to its receptor on the cell surface. The subsequent increase in the formation of cAMP (the second messenger) leads to the alteration of enzyme activity within the cell. A change in the activity of these enzymes alters cellular metabolism. Figure 10.1 ThecyclicAMPsecondmessengersystem.Themostcommonsecond messenger system activated by the protein/peptide hormones and the catecholamines involves the formation of cAMP. This multistep process is initiated by binding of the hormone (the first messenger) to its receptor on the cell surface. The subsequent increase in the formation of cAMP (the second messenger) leads to the alteration of enzyme activity within the cell. A change in the activity of these enzymes alters cellular metabolism.
Histamine is synthesized in the brain from L-histidine by the enzyme histidine decarboxylase (HDC) (Fig. 2.2C). HDC can be inhibited by application of a-fluoromethylhistidine (a-FMH). Unlike serotonin and the catecholamines, no... [Pg.36]


See other pages where Catecholamines enzymic is mentioned: [Pg.1037]    [Pg.1037]    [Pg.171]    [Pg.438]    [Pg.206]    [Pg.358]    [Pg.358]    [Pg.22]    [Pg.43]    [Pg.438]    [Pg.970]    [Pg.215]    [Pg.216]    [Pg.435]    [Pg.170]    [Pg.170]    [Pg.73]    [Pg.265]    [Pg.331]    [Pg.198]    [Pg.71]    [Pg.63]    [Pg.184]    [Pg.268]    [Pg.108]    [Pg.30]    [Pg.31]    [Pg.32]    [Pg.33]    [Pg.180]    [Pg.20]   
See also in sourсe #XX -- [ Pg.210 , Pg.278 ]




SEARCH



Catecholamines

© 2024 chempedia.info