Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic zero-order reaction

The results of the catalytic tests were expressed as DPM total conversion. These experimental results were compared to theoretical values (Cj), calculated considering, as an approximation, a zero-order reaction and the absence of interactions of any kind between both phases, according to the following expression ... [Pg.100]

If a reaction that must be investigated follows a reaction sequence as in Scheme 10.1, and if the reaction order for the substrate equals unity, it means that (with reference to Eq. (4 b)), the observed rate constant (k0bs) is a complex term. Without further information, a conclusion about the single constants k2 and fCM is not possible. Conversely, from the limiting case of a zero-order reaction, the Michaelis constant cannot be determined for the substrate. For particular questions such as the reliable comparison of activity of various catalytic systems, however, both parameters are necessary. If they are not known, the comparison of catalyst activities for given experimental conditions can produce totally false results. This problem is described in more detail for an example of asymmetric hydrogenation (see below). [Pg.263]

Examples are known of reactions in which the reaction rate is not affected by changes in concentrations of one or more reactants. These are called zero-order reactions. In such reactions the rate may be determined by some other limiting factor such as the amount of catalyst used in a catalytic reaction or the intensity of light absorbed in a photochemical reaction. Mathematically, for a zero-order reaction A —> P,... [Pg.47]

Most drugs undergo zero, first, and pseudo first-order reactions in solution. Reactions beyond second-order are uncommon in pharmaceutical solutions. Zero-order reactions occur when the reaction rate is independent of the concentration of the reactant, but affected by other factors such as solubility, the amount of radiation absorbed in a photochemical reaction, or the amount of catalyst in a catalytic reaction. [Pg.357]

In general, the reaction order does not follow from the stoichiometry of the chemical equation. In the case of the catalytic decomposition of ammonia on a hot platinum wire, the reaction order is zero initially because the reaction occurs on the surface of the wire, and the surface coverage is independent of concentration. The rate of a zero-order reaction is independent of concentration until the reactant is nearly exhausted or until equilibrium is reached. [Pg.157]

The zero-order kinetics imply saturated adsorption on the active part of the catalyst surface, while the adsorption on the whole surface apparently depends upon the pressure of formic acid. The saturated adsorption of the copper surface calculated as one-site adsorption is shown as 0 = 1 in the results. It appears therefore that the catalytically active part is a minor part of the surface available for adsorption. In this manner, adsorption measurements during surface catalysis in the case of a zero-order reaction could lead to an estimate of the active part of the catalyst surface. [Pg.83]

When the rate expression is written in the form of either Eqs. (4.1.3) or (4.1.5), the dimensions of the rate constant depend on the order of the reaction for a i th-order homogeneous reaction the dimensions are (mol m ) " s In the special case of a first-order homogeneous reaction, the dimensions become inverse time. For a zero-order reaction the reaction rate is independent of concentration, and the dimensions become mol m s. For complex reactions, as for example catalytic reactions, there is often no well-defined reaction order with respect to the reacting species. [Pg.84]

Catalytical Activity and Transport Limitation Catalytical lltficiency and Thiele Modulus- As is well known in heterogeneous catalysis, the relevance of transport limitations in such a reaction system can be evaluated if the Thiele modulus is known (23), ). For a set of assumptions (28), the Thiele modulus for s erical particles and a zero-order reaction can... [Pg.108]

If the mass transfer is accompanied by a chemical reaction at the catalyst surface on the reactor wall, the mass transfer depends on the reaction kinetics [55]. For a zero-order reaction, the rate is independent of the concentration and the mass flow from the bulk to the wall is constant, whereas the reactant concentration at the catalytic wall varies along the reactor length. For this situation the asymptotic Sh in circular tube reactors becomes Sh. = 4.36 [55]. The same value is obtained when reaction rates are low compared to the rate of mass transfer. If the reaction rate is high (very fast reactions), the concentration at the reactor wall can be approximated to zero within the whole reactor and the asymptotic value for Sh is = 3.66. As a consequence, the Sh in the reacting system depends on the ratio of the reaction rate to the rate of mass transfer characterized by the second Damkohler number defined in Equation 6.11. [Pg.249]

In the measurement of enzyme activity, a high substrate concentration that is greatly in excess of the Km value is always used, and the enzyme sample to be investigated is correspondingly diluted vmder the conditions, the rate of the enzyme-catalyzed reaction depends only on the enzyme concentration, i.e., it is a zero order reaction. Even under conditions of substrate saturation, the measured catalytic activities are influenced by slight differences in reaction conditions, such as the temperature, composition and concentration of the buffer, pH value, nature of the substrate and its concentration, coenzymes, and protein content in the sample. Therefore, the results of measurement of the catalytic activity of an enzyme are in principle method dependent direct comparison of the results between laboratories is made difficult by the use of different methods in different laboratories. [Pg.1134]

Because the forms of these expressions match, we can see that if we plot [A] (on the y axis) as a function of t (on the x axis), we will get a straight line. We can also see that the slope of that line (yn) must be equal to -k and the y intercept (b) must be equal to [A]q, the initial concentration of reactant A. Equation 11.4 provides us a model of the behavior expected for a system obeying a zero-order rate law. To test this model, we simply need to compare it with data for a particular reaction. So we could measure the concentration of reactant A as a function of time, and then plot [A] versus t. If the plot is linear, we could conclude that we were studying a zero-order reaction. The catalytic destruction of N2O in the presence of gold is an example of this type of kinetics. A graphical analysis of the reaction is shown in Figure 11.6. [Pg.438]

Further studies of the formose reaction have been reported. Alkaline-earth metal hydroxides initiated zero-order reactions at intermediate conversions of formaldehyde, and the formation of glyceraldehyde or tetroses and pentoses, etc., from formaldehyde in the presence of calcium hydroxide depended on whether or not glycolaldehyde was present. Self-condensation of formaldehyde in the presence of alkaline-earth metal hydroxides has also been studied in the absence and in the presence of a co-catalyst such as D-glucose and in the presence of glycolaldehyde. Self-condensation of formaldehyde in the presence of lead(ii) oxide appears to involve a soluble complex in which the lead atom co-ordinates with the carbonyl oxygen atom of formaldehyde. " The catalytic functions of calcium ion species in a homogeneous formose reaction and the distribution of products in a photochemical formose reaction have been investigated. [Pg.13]

Not all reactions are exothermic. Thermal cracking is an endothermic reaction. Heat is absorbed. Good thing, too. If thermal cracking of crude oil was exothermic, all the earth s crude would by now have turned to coal and natural gas. Delayed cokers, visbreakers, and fluid catalytic cracking units are processes that are primarily endothermic in nature. A delayed coker operates with a zero order reaction. This means the rate of reaction depends on time in the coke drum and the temperature in the coke drum. The composition of the products of reaction have no effect. [Pg.444]

Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

The most widely accepted mechanism of reaction is shown in the catalytic cycle (Scheme 1.4.3). The overall reaction can be broken down into three elementary steps the oxidation step (Step A), the first C-O bond forming step (Step B), and the second C-O bond forming step (Step C). Step A is the rate-determining step kinetic studies show that the reaction is first order in both catalyst and oxidant, and zero order in olefin. The rate of reaction is directly affected by choice of oxidant, catalyst loadings, and the presence of additives such as A -oxides. Under certain conditions, A -oxides have been shown to increase the rate of reaction by acting as phase transfer catalysts. ... [Pg.30]

Thus in Table 4.3 we add to Table 4.2 the last, but quite important, available piece of information, i.e. the observed kinetic order (positive order, negative order or zero order) of the catalytic reaction with respect to the electron donor (D) and the electron acceptor (A) reactant. We then invite the reader to share with us the joy of discovering the rules of electrochemical promotion (and as we will see in Chapter 6 the rules of promotion in general), i.e. the rules which enable one to predict the global r vs O dependence (purely electrophobic, purely electrophilic, volcano, inverted volcano) or the basis of the r vs pA and r vs pD dependencies. [Pg.158]

The presence of soluble Rh nanoparticles after catalysis is demonstrated by TEM. The kinetic of the catalytic reaction was found to be zero-order in respect to the substrate and first order with respect to hydrogen and catalyst. Curiously, under the same conditions (60 °C, 7 bar H2), ethylcyclohexane is not detected at the end of phenylacetylene hydrogenation and the formation of methylcyclohexane from toluene was only obtained under drastic conditions 40 bar H2 and 80 °C. [Pg.267]

This simple example of a non-catalytic reaction demonstrates how a reaction rate law may be comprehensively defined in two substrates by just two reaction progress experiments employing two different values of excess [e]. A classical kinetics approach using initial rate measurements would require perhaps a dozen separate initial rate or pseudo-zero-order experiments to obtain the same information. [Pg.450]

Information on step 1 in this scheme is available from high-pressure infrared measurements under reaction conditions. At CO partial pressures above about 150 atm no Ru3(CO) 2 is observed but at lower CO pressures some of the trimer can be detected. This equilibrium between Ru3(CO)i2 and mononuclear catalytically active species may therefore be the cause of the CO dependence found under low CO partial pressures although zero-order CO dependence is observed under higher CO pressures. [Pg.218]

The steady state experiments showed that the two separate phases and the mixture are not very different in activity, give approximately the same product distributions, and have similar kinetic parameters. The reaction is about. 5 order in methanol, nearly zero order in oxygen, and has an apparent activation energy of 18-20 kcal/mol. These kinetic parameters are similar to those previously reported (9,10), but often ferric molybdate was regcirded to be the major catalytically active phase, with the excess molybdenum trioxide serving for mechanical properties and increased surface area (10,11,12). [Pg.242]

In this case, most of the catalyst is in the form of M A and the reaction is zero order with respect to A. Thus, the kinetics move from first order at low cA toward zero order as cA increases. This feature of the rate saturating or reaching a plateau is common to many catalytic reactions, including surface catalysis (Section 8.4) and enzyme catalysis (Chapter 10). [Pg.187]

Catalytic studies and kinetic investigations of rhodium nanoparticles embedded in PVP in the hydrogenation of phenylacetylene were performed by Choukroun and Chaudret [90]. Nanoparticles of rhodium were used as heterogeneous catalysts (solventless conditions) at 60 °C under a hydrogen pressure of 7 bar with a [catalyst]/[substrate] ratio of 3800. Total hydrogenation to ethylbenzene was observed after 6 h of reaction, giving rise to a TOF of 630 h 1. The kinetics of the hydrogenation was found to be zero-order with respect to the al-kyne compound, while the reduction of styrene to ethylbenzene depended on the concentration of phenylacetylene still present in solution. Additional experi-... [Pg.239]


See other pages where Catalytic zero-order reaction is mentioned: [Pg.187]    [Pg.162]    [Pg.267]    [Pg.9]    [Pg.544]    [Pg.478]    [Pg.103]    [Pg.111]    [Pg.263]    [Pg.88]    [Pg.693]    [Pg.277]    [Pg.225]    [Pg.50]    [Pg.79]    [Pg.128]    [Pg.125]    [Pg.145]    [Pg.76]    [Pg.431]    [Pg.221]    [Pg.347]    [Pg.403]    [Pg.571]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Reaction order, catalytic

Zero order reactions

Zero-order

© 2024 chempedia.info