Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic processes oxidative addition

The mechanism proposed for aromatic C-H borylation of aromatic compounds 1 by B2pin2 3 catalyzed by the Ir-bpy complex is depicted in Scheme 3 [6-9]. A tris(boryl)Ir (III) species [5, 6, 11] 6 generated by reaction of an Ir(I) complex 5 with 3 is chemically and kinetically suitable to be an intermediate in the catalytic process. Oxidative addition of 1 to 6 yields an Ir(V) species 7 that reductively eliminates an aromatic boron compound 4 to give a bis(boryl)Ir(III) hydride complex 8. Oxidative addition of 3 to 8 can be followed by reductive elimination of HBpin 2 from 9 to regenerate 6. 2 also participates in the catalytic cycle via a sequence of oxidative addition to 8 and reductive elimination of H2 from an 18-electron Ir(V) intermediate 10. Borylation of 1 by 2 may occur after consumption of 3, because the catalytic reaction is a two-step process - fast borylation by 3 then slow borylation by 2 [6],... [Pg.128]

Oxidative addition reactions (and their reverse, reductive eliminations) are among the most important elementary transformations in organometallic chemistry and also play a key role in many stoichiometric and catalytic processes. Oxidative additions commonly involve the addition of a neutral molecule (X-Y) to a single metal center (M), resulting in the formation of new M-X and M-Y bonds and an increase by two units in the metal s oxidation state, electron count, and coordination number (Equation (5)). Although oxidative additions and reductive eliminations are in principle reversible reactions, the position of the equilibrium, which is governed by the overall thermodynamics of the species involved (i.e., the relative strengths of the bonds broken and formed), is often completely shifted to one of the sides. [Pg.98]

Therefore it seems reasonable to assume that cyanation of aryl halides involves two fundamental processes oxidative addition of the tris(triphenylphosphine)nickel complex on the aromatic halide (Reaction 2) and cyanation of the arylnickel(II) complex 1 (Reaction 8). A further proof of the validity of this scheme is that both Ni[P(C6H5)3]3 and arylnickel (II) complexes 1 have an equal catalytic activity, these latter being intermediates of the catalytic process. Recent studies (22) on the influence of substituents on the aromatic halide in the oxidative addition reaction with Ni[P(C6H5)3]3 have given the results shown in Figure 4. [Pg.277]

Some key adsorbates and reaction intermediates relevant to fuel-cell anodes are H2 as the fuel, CO and CO2 as poisons in hydrogen reformate feeds, and water as a co-adsorbate and potential oxidant. In the case of the cathode, oxygen is clearly the most important reactant. In the case of a number of these molecules, such as H2, O2, and H2O, not only is the molecular adsorption important on platinum (or promoted platinum catalysts), but the dissociative adsorption of the molecules is important as well. With this in mind, some details concerning the dynamics of adsorption of these molecules, the associated dissociation barriers, molecular degrees of freedom, and energy partition are important to the overall catalytic processes. In addition to the... [Pg.199]

Another important o-bond activation/formation process discussed in this article is vinyl-vinyl coupling, shown in Scheme 7. Vinyl-vinyl coupling opens a convenient route to conjugated 1,3-dienes and is widely employed in many catalytic coupling reactions. The great potential of the field is still under continuous development [26,27] and, therefore, elucidation of the C-C bond formation mechanism and the factors controlling it are very crucial. In literature, numerous mechanistic studies on C-C reductive elimination and reverse process, oxidative addition (C-C bond activation), have been reported for di-... [Pg.17]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

The RR developed by the author at UCC was the only one that had a high recycle rate with a reasonably known internal flow (Berty, 1969). This original reactor was named later after the author as the Berty Reactor . Over five hundred of these have been in use around the world over the last 30 years. The use of Berty reactors for ethylene oxide process improvement alone has resulted in 300 million pounds per year increase in production, without addition of new facilities (Mason, 1966). Similar improvements are possible with many other catalytic processes. In recent years a new blower design, a labyrinth seal between the blower and catalyst basket, and a better drive resulted in an even better reactor that has the registered trade name of ROTOBERTY . ... [Pg.280]

In a sense the formation of t) -H2 complexes can be thought of as an intermediate stage in the oxidative addition of H2 to form two M-H bonds and, as such, the complexes might serve as a model for this process and for catalytic hydrogenation reactions by metal hydrides. Indeed, intermediate cases between and... [Pg.47]

Various types of non-hydrocarbon compounds occur in crude oils and refinery streams. The most important are the organic sulfur, nitrogen, and oxygen compounds. Traces of metallic compounds are also found in all crudes. The presence of these impurities is harmful and may cause problems to certain catalytic processes. Fuels having high sulfur and nitrogen levels cause pollution problems in addition to the corrosive nature of their oxidization products. [Pg.15]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

A plausible mechanism accounting for the catalytic role of nickel(n) chloride has been advanced (see Scheme 4).10 The process may be initiated by reduction of nickel(n) chloride to nickel(o) by two equivalents of chromium(n) chloride, followed by oxidative addition of the vinyl iodide (or related substrate) to give a vinyl nickel(n) reagent. The latter species may then undergo transmetala-tion with a chromium(m) salt leading to a vinyl chromium(m) reagent which then reacts with the aldehyde. The nickel(n) produced in the oxidative addition step reenters the catalytic cycle. [Pg.717]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

The catalytic process is also achieved in the Pd(0)/Cr(II)-mediated coupling of organic halides with aldehydes (Scheme 33) [74], Oxidative addition of a vinyl or aryl halide to a Pd(0) species, followed by transmetallation with a chromium salt and subsequent addition of the resulting organo chromate to an aldehyde, leads to the alcohol 54. The presence of an oxophile [Li(I) salts or MesSiCl] allows the cleavage of the Cr(III) - 0 bond to liberate Cr(III), which is reduced to active Cr(II) on the electrode surface. [Pg.83]

In summary, these results demonstrate that air-stable POPd, POPdl and POPd2 complexes can be directly employed to mediate the rate-limiting oxidative addition of unactivated aryl chlorides in the presence of bases, and that such processes can be incorporated into efficient catalytic cycles for a variety of cross-coupling reactions. Noteworthy are the efficiency for unactivated aryl chlorides simplicity of use, low cost, air- and moisture-stability, and ready accessibility of these complexes. Additional applications of these air-stable palladium complexes for catalysis are currently under investigation. [Pg.180]

Recently, Larock and coworkers used a domino Heck/Suzuki process for the synthesis of a multitude of tamoxifen analogues [48] (Scheme 6/1.20). In their approach, these authors used a three-component coupling reaction of readily available aryl iodides, internal alkynes and aryl boronic acids to give the expected tetrasubsti-tuted olefins in good yields. As an example, treatment of a mixture of phenyliodide, the alkyne 6/1-78 and phenylboronic acid with catalytic amounts of PdCl2(PhCN)2 gave 6/1-79 in 90% yield. In this process, substituted aryl iodides and heteroaromatic boronic acids may also be employed. It can be assumed that, after Pd°-cata-lyzed oxidative addition of the aryl iodide, a ds-carbopalladation of the internal alkyne takes place to form a vinylic palladium intermediate. This then reacts with the ate complex of the aryl boronic acid in a transmetalation, followed by a reductive elimination. [Pg.372]

Cross-coupling to form carbon heteroatom bonds occurs by oxidative addition of an organic halide, generation of an aryl- or vinylpalladium amido, alkoxo, tholato, phosphido, silyl, stannyl, germyl, or boryl complex, and reductive elimination (Scheme 2). The relative rates and thermodynamics of the individual steps and the precise structure of the intermediates depend on the substrate and catalyst. A full discussion of the mechanism for each type of substrate and each catalyst is beyond the scope of this review. However, a series of reviews and primary literature has begun to provide information on the overall catalytic process.18,19,22,23,77,186... [Pg.390]


See other pages where Catalytic processes oxidative addition is mentioned: [Pg.180]    [Pg.439]    [Pg.180]    [Pg.180]    [Pg.439]    [Pg.180]    [Pg.489]    [Pg.3]    [Pg.447]    [Pg.768]    [Pg.176]    [Pg.526]    [Pg.419]    [Pg.483]    [Pg.170]    [Pg.2097]    [Pg.240]    [Pg.393]    [Pg.124]    [Pg.158]    [Pg.171]    [Pg.303]    [Pg.306]    [Pg.65]    [Pg.26]    [Pg.319]    [Pg.149]    [Pg.312]    [Pg.481]    [Pg.1056]    [Pg.181]    [Pg.56]    [Pg.114]    [Pg.142]    [Pg.149]   
See also in sourсe #XX -- [ Pg.781 , Pg.782 , Pg.783 ]




SEARCH



Addition process

Catalytic additives

Catalytic oxidation processes

Catalytic processes

© 2024 chempedia.info