Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic cycles substrate dependance

Catalysis (qv) refers to a process by which a substance (the catalyst) accelerates an otherwise thermodynamically favored but kiaeticahy slow reaction and the catalyst is fully regenerated at the end of each catalytic cycle (1). When photons are also impHcated in the process, photocatalysis is defined without the implication of some special or specific mechanism as the acceleration of the prate of a photoreaction by the presence of a catalyst. The catalyst may accelerate the photoreaction by interaction with a substrate either in its ground state or in its excited state and/or with the primary photoproduct, depending on the mechanism of the photoreaction (2). Therefore, the nondescriptive term photocatalysis is a general label to indicate that light and some substance, the catalyst or the initiator, are necessary entities to influence a reaction (3,4). The process must be shown to be truly catalytic by some acceptable and attainable parameter. Reaction 1, in which the titanium dioxide serves as a catalyst, may be taken as both a photocatalytic oxidation and a photocatalytic dehydrogenation (5). [Pg.398]

Ornithine decarboxylase is a pyridoxal dependent enzyme. In its catalytic cycle, it normally converts ornithine (7) to putrisine by decarboxylation. If it starts the process with eflornithine instead, the key imine anion (11) produced by decarboxylation can either alkylate the enzyme directly by displacement of either fluorine atom or it can eject a fluorine atom to produce viny-logue 12 which can alkylate the enzyme by conjugate addidon. In either case, 13 results in which the active site of the enzyme is alkylated and unable to continue processing substrate. The net result is a downturn in the synthesis of cellular polyamine production and a decrease in growth rate. Eflornithine is described as being useful in the treatment of benign prostatic hyperplasia, as an antiprotozoal or an antineoplastic substance [3,4]. [Pg.3]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

A kinetic study of the hydrodefluorination of C F H in the presence of EtjSiH indicated a first-order dependence on both [fluoroarene] and [ruthenium precursor] and a zero-order dependence on the concentration of alkylsilane, implying that the rate-limiting step in the catalytic cycle involves activation of the fluoroarene. The regioselectivity for hydrodefluorination of partially fluorinated substrates such as CgFjH has been accounted for by an initial C-H bond activation as shown in the... [Pg.214]

MnP is the most commonly widespread of the class II peroxidases [72, 73], It catalyzes a PLC -dependent oxidation of Mn2+ to Mn3+. The catalytic cycle is initiated by binding of H2O2 or an organic peroxide to the native ferric enzyme and formation of an iron-peroxide complex the Mn3+ ions finally produced after subsequent electron transfers are stabilized via chelation with organic acids like oxalate, malonate, malate, tartrate or lactate [74], The chelates of Mn3+ with carboxylic acids cause one-electron oxidation of various substrates thus, chelates and carboxylic acids can react with each other to form alkyl radicals, which after several reactions result in the production of other radicals. These final radicals are the source of autocataly tic ally produced peroxides and are used by MnP in the absence of H2O2. The versatile oxidative capacity of MnP is apparently due to the chelated Mn3+ ions, which act as diffusible redox-mediator and attacking, non-specifically, phenolic compounds such as biopolymers, milled wood, humic substances and several xenobiotics [72, 75, 76]. [Pg.143]

Depending on the nature of the substrates, selectivity could be completely reversed between the two isomeric products. For example, switching R1 group between Buc and Ph gave high yields of the first and second product structures, respectively. The authors noted that the reaction did not proceed if the imine contained an ortho-MeO group at R2 or if the imine was replaced with an aldehyde, oxime, or hydrazone. The catalytic cycle is initiated by C-H activation of the imine, that is, the formation of a five-membered metallocycle alkyne insertion affords the intermediate drawn in Scheme 69. It is noteworthy that this is the first report of catalytic synthesis of indene derivatives via a C-H insertion mechanism (C-H activation, insertion, intramolecular addition). [Pg.438]

Since the first use of catalyzed hydrogen transfer, speculations about, and studies on, the mechanism(s) involved have been extensively published. Especially in recent years, several investigations have been conducted to elucidate the reaction pathways, and with better analytical methods and computational chemistry the catalytic cycles of many systems have now been clarified. The mechanism of transfer hydrogenations depends on the metal used and on the substrate. Here, attention is focused on the mechanisms of hydrogen transfer reactions with the most frequently used catalysts. Two main mechanisms can be distinguished (i) a direct transfer mechanism by which a hydride is transferred directly from the donor to the acceptor molecule and (ii) an indirect mechanism by which the hydride is transferred from the donor to the acceptor molecule via a metal hydride intermediate (Scheme 20.3). [Pg.587]

To examine the nature of the enatioselectivity of the catalysis we have examined the catalytic cycle with two substrates, styrene which leads to predominantly the R form of the product (64% ee) and 4-(dimethylamino)styrene which gives predominantly the S form of the product (67% ee). Our simulations suggest that the t 3-allylic coordination of the styrene substrate plays an important role in defining the enatioselectivity of the hydrosilylation. As a first step, this theoretical study constitutes a valid contribution in rationalizing the enantioselective determining factors and possibly in designing a new catalyst with improved enantioselective properties. We are currently examining nature of the enantioselectivity in more detail as well as the dependence of the enantioselectivity on the electronic nature of the substrates [58]. [Pg.248]

Some reactions have to be "pseudomonomolecular". Their constants depend on concentrations of outer components, and are constant only under condition that these outer components are present in constant concentrations, or change sufficiently slow. For example, the simplest Michaelis-Menten enzymatic reaction is E+S ES->E+P (E here stands for enzyme, S for substrate and P for product), and the linear catalytic cycle here is S ES S. Hence, in general we must consider nonlinear systems. [Pg.106]

The proposed catalytic cycle is in accordance with the results of the kinetic studies. The dependence of the reaction rate on the substrate and Grignard reagent indicates that both reactants are involved in the rate-limiting step. This step is preceded by fast equihbria between complexes, for example, a substrate-bound cr-complex and jr-complex and substrate-unbound complex A. [Pg.789]

The unpromoted hydrocyanations of monoolefins discussed so far generally involved only a few catalytic cycles on nickel. The development of a practical commercial process depended on getting many cycles. Certain Lewis acids are quite remarkable in increasing (1) catalyst cycles, (2) the linearity of products obtained, and (3) the rates of reaction. The effects depend on the Lewis acid, the phosphorus ligand used, and the olefin substrate (72). [Pg.34]

In conclusion it looks as if the reactive oxo-iron(IV) intermediate of the catalytic cycle of cytochrome P450 operates by different mechanisms depending on the structure and electronic nature of the unsaturated substrates. [Pg.63]

As illustrated in Scheme 6.1, once the covalent intermediate is formed, the complex can either follow a normal catalytic cycle or go through a suicide event leading to the irreversible labeling that is necessary for selection. The suicide inhibition efficiency depends on the ratio k /k. This ratio depends on the nature of the suicide substrate and of the enzyme. Therefore, a large excess of suicide substrate as compared to the displayed enzyme is recommended for selection experiments. [Pg.59]


See other pages where Catalytic cycles substrate dependance is mentioned: [Pg.42]    [Pg.21]    [Pg.69]    [Pg.323]    [Pg.229]    [Pg.386]    [Pg.14]    [Pg.158]    [Pg.180]    [Pg.462]    [Pg.84]    [Pg.58]    [Pg.672]    [Pg.842]    [Pg.25]    [Pg.89]    [Pg.108]    [Pg.1089]    [Pg.89]    [Pg.117]    [Pg.199]    [Pg.172]    [Pg.49]    [Pg.365]    [Pg.378]    [Pg.60]    [Pg.130]    [Pg.439]    [Pg.28]    [Pg.48]    [Pg.701]    [Pg.42]    [Pg.56]    [Pg.455]    [Pg.441]    [Pg.61]    [Pg.68]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Catalytic cycle

Substrate cycles

Substrate cycling

Substrate dependence

© 2024 chempedia.info