Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic cracking temperature

Catalytic cracking is a key refining process along with catalytic reforming and alkylation for the production of gasoline. Operating at low pressure and in the gas phase, it uses the catalyst as a solid heat transfer medium. The reaction temperature is 500-540°C and residence time is on the order of one second. [Pg.384]

In fluid catalytic cracking, a partially vaporized gas oil is contacted with zeoflte catalyst (see Fluidization). Contact time varies from 5 s—2 min pressure usually is in the range of 250—400 kPa (2.5—4 atm), depending on the design of the unit reaction temperatures are 720—850 K (see BuTYLENEs). [Pg.126]

Thermal Asphalt. Thermal asphalt products are in low supply because the thermal process has been virtually replaced by catalytic cracking processes. Thermal pitches, because of their high viscosity temperature susceptibiHty, are very hard at ordinary temperatures (Table 9), but become quite... [Pg.372]

Catalytic Cracking. This is a refinery process that produces a mixture of butylenes and butanes with very small amounts of butadiene. The specific composition of the mixture depends on the catalyst and process conditions. Most catalytic cracking processes employ temperatures about... [Pg.367]

The principal sources of feedstocks in the United States are the decant oils from petroleum refining operations. These are clarified heavy distillates from the catalytic cracking of gas oils. About 95% of U.S. feedstock use is decant oil. Another source of feedstock is ethylene process tars obtained as the heavy byproducts from the production of ethylene by steam cracking of alkanes, naphthas, and gas oils. There is a wide use of these feedstocks in European production. European and Asian operations also use significant quantities of coal tars, creosote oils, and anthracene oils, the distillates from the high temperature coking of coal. European feedstock sources are 50% decant oils and 50% ethylene tars and creosote oils. [Pg.544]

Pressure Vessels. Refineries have many pressure vessels, e.g., hydrocracker reactors, cokers, and catalytic cracking regenerators, that operate within the creep range, i.e., above 650°F. However, the phenomenon of creep does not become an important factor until temperatures are over 800°F. Below this temperature, the design stresses are usually based on the short-time, elevated temperature, tensile test. [Pg.261]

Expanders have not been the essence of reliability. It is not that the expander design in itself has any significant problems. The problems for the most part seem to be related to the application. Most of the failures have been the result of the expander ingesting foreign substances, such as the catalyst in a catalytic cracking unit heat recovery application. Unlike the expansion section of the gas turbine, the inlet temperature is not as high, therefore, temperature is not a significant factor in reliability reduction. [Pg.480]

The catalytic cracking processes, as well as most other refinery catalytic processes, produce coke which collects on the catalyst surface and diminishes its catalytic properties. The catalyst, therefore, needs to be regenerated continuously or periodically essentially by burning the coke off the catalyst at high temperatures. [Pg.88]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

Cracking is an endothermic reaction, implying that the temperature must be rather high (500 °C), with the consequence that catalysts deactivate rapidly by carbon deposition. The fluidized catalytic cracking (FCC) process, developed by Standard Oil Company of New Jersey (1940) (better known as ESSO and nowadays EXXON), offers a solution for the short lifetime of the catalyst. Although cracking is... [Pg.361]

T. H. Tsai, J. W. Lane, and C. S. Lin Temperature-Programmed Reduction for Solid Materials Characterization, Alan Jones and Brian McNichol Catalytic Cracking Catalysts, Chemistry, and Kinetics,... [Pg.540]

Catalytic cracking When a mixture of alkanes from the gas oil fraction (C12 and higher) is heated at very high temperature (-500 °C) in the presence of a variety of catalysts, the molecules break apart and rearrange to smaller, more highly branched alkanes containing 5-10 carbon atoms. [Pg.125]

At low temperature (375 and 400 °C), the product distribution obtained with the catalysts is very different from the one obtained under thermal cracking. With the catalytic cracking (ZSM-5), the obtained products are mainly n-alkanes, isomerised alkanes and alkenes with a carbon number between 1 to 6 whereas with the thermal cracking the whole range of n-alkanes with 1 to 9 carbon atoms and the 1 -alkenes with 2 to 10 carbon atoms are observed. This difference of product distribution can easily be explained by the cracking mechanisms. In one hand, the active intermediate is a carbocation and in the other hand it is a radical. [Pg.352]


See other pages where Catalytic cracking temperature is mentioned: [Pg.302]    [Pg.302]    [Pg.178]    [Pg.127]    [Pg.508]    [Pg.517]    [Pg.526]    [Pg.179]    [Pg.220]    [Pg.371]    [Pg.1563]    [Pg.109]    [Pg.262]    [Pg.203]    [Pg.205]    [Pg.206]    [Pg.214]    [Pg.219]    [Pg.26]    [Pg.291]    [Pg.337]    [Pg.988]    [Pg.75]    [Pg.76]    [Pg.20]    [Pg.605]    [Pg.85]    [Pg.1107]    [Pg.240]    [Pg.566]    [Pg.95]    [Pg.428]    [Pg.112]    [Pg.269]    [Pg.349]    [Pg.350]    [Pg.352]    [Pg.2]    [Pg.1343]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Catalytic cracking reactors temperature and composition profiles

Catalytic cracking temperature effects

Catalytic cracking, general temperature conditions

Cracking temperature

Mild-temperature catalytic cracking

Temperature fluid catalytic cracking

© 2024 chempedia.info