Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic activity evaluating

Gold has been recently demonstrated to be active in many catalytic reactions as reviewed by Bond and Thompson [1], However, as highlighted by Haruta [2], many different parameters play a role in determining activity (i.e. particle size and shape, preparation methods, nature of support) sometimes making difficult the comparison of experimental results. For example, catalytic activity evaluated against different units showed different trends, showing convincingly that beside total surface area, some other size-dependent factor has to be involved. [Pg.355]

Figure 5. (a) BET measurements for the calcined CR and CS sample series, and (b) Catalytic activity evaluation for catalysts (27% NjO, GHSV = 3000 h ) prior the catalytic test, as-prepared CR or CS was decomposed in situ under the flow of the reaction mixture at 350°C. [Pg.493]

In this paper, we present a simple and direct synthesis procedure for composite material consisting of ZSM-5 nanocrystals embedded in a mesoporous silica matrix. The samples were characterized and their catalytic activity evaluated using decane hydroconversion. [Pg.259]

The synthesis of polyamides by in situ polycondensation of nylon salts or amino acids in the presence of aryl sulphites and imidazole or pyridine has also been studied and their catalytic activity evaluated. [Pg.92]

Friedel-Crafts catalysts are electron acceptors, ie, Lewis acids. The alkylating ability of ben2yl chloride was selected to evaluate the relative catalytic activity of a large number of Lewis acid haUdes. The results of this study suggest four categories of catalyst activity (200) (Table 1). [Pg.564]

Catalyst testing and evaluation have been revolutionized by computers, automated test reactors, and analytical methods. With modem equipment, researchers can systematically prepare and screen many catalysts in a short time and efftciendy deterrnine, not only the initial catalytic activity and selectivity, but also the stabiUty and the appearance of trace products that may indicate some new catalytic properties worthy of further development. [Pg.183]

The complexation procedure included addition of an equimolar amount of R,R-DBFOX/Ph to a suspension of a metal salt in dichloromethane. A clear solution resulted after stirring for a few hours at room temperature, indicating that formation of the complex was complete. The resulting solution containing the catalyst complex was used to promote asymmetric Diels-Alder reactions between cyclopen-tadiene and 3-acryloyl-2-oxazolidinone. Both the catalytic activity of the catalysts and levels of chirality induction were evaluated on the basis of the enantio-selectivities observed for the endo cycloadduct. [Pg.251]

Various investigators have tried to obtain information concerning the reaction mechanism from kinetic studies. However, as is often the case in catalytic studies, the reproducibility of the kinetic measurements proved to be poor. A poor reproducibility can be caused by many factors, including sensitivity of the catalyst to traces of poisons in the reactants and dependence of the catalytic activity on storage conditions, activation procedures, and previous experimental use. Moreover, the activity of the catalyst may not be constant in time because of an induction period or of catalyst decay. Hence, it is often impossible to obtain a catalyst with a constant, reproducible activity and, therefore, kinetic data must be evaluated carefully. [Pg.160]

A first evaluation of complex 71a by Blechert et al. revealed that its catalytic activity differs significantly from that of the monophosphine complex 56d [49b]. In particular, 71a appears to have a much stronger tendency to promote cross metathesis rather than RCM. Follow-up studies by the same group demonstrate that 71a allows the cross metathesis of electron-deficient alkenes with excellent yields and chemoselectivities [50]. For instance, alkene 72 undergoes selective cross metathesis with 3,3,3-trifluoropropene to give 73 in excellent yield and selectivity. Precatalyst 56d, under identical conditions, furnishes a mixture of 73 and the homodimer of 72 (Scheme 17) [50a]. While 56d was found to be active in the cross metathesis involving acrylates, it failed with acrylonitrile [51]. With 71a, this problem can be overcome, as illustrated for the conversion of 72—>74 (Scheme 17) [50b]. [Pg.246]

The concept of electrostatic complimentarity is somewhat meaningless without the ability to estimate its contribution to AAg. Thus, it is quite significant that the electrostatic contribution to AAthat should be evaluated by rigorous FEP methods can be estimated with a given enzyme-substrate structure by rather simple electrostatic models (e.g., the PDLD model). It is also significant that calculated electrostatic contributions to A A g seem to account for its observed value (at least for the enzymes studied in this book). This indicates that simple calculations of electrostatic free energy can provide the correlation between structure and catalytic activity (Ref. 10). [Pg.226]

Assuming that substituted Sb at the surface may work as catalytic active site as well as W, First-principles density functional theory (DFT) calculations were performed with Becke-Perdew [7, 9] functional to evaluate the binding energy between p-xylene and catalyst. Scalar relativistic effects were treated with the energy-consistent pseudo-potentials for W and Sb. However, the binding strength with p-xylene is much weaker for Sb (0.6 eV) than for W (2.4 eV), as shown in Fig. 4. [Pg.62]

In the search of high-performance SOFC anode, doped ceria have been evaluated as possible anode materials [9,10]. Comparing Ni-samaria-doped ceria (SDC) with Ni-YSZ, the Ni-SDC anode exhibits higher open-circuit voltages and a lower degree of polarization with either methanol as the fuel, as shown in Fig. 5, or methane as the fuel, as shown in Fig. 6. It was found that the depolarization ability of the anode is associated with the catalytic activity, the electrical conductivity, and the oxygen ionic conductivity of the anode materials [9]. It was also found that the anodic polarization and electro-catalytic activity strongly depend on the Ni content in the anode, and the optimum result for the Ni-SDC anode is achieved with 60... [Pg.98]

Two space velocities, i.e. 0.03 and 0.3 h l, have been used in the evaluation of catalytic activities of catalysts B and C at 823 K. Figure 6 shows a decrease in activity of the catalyst B when space velocity increases. The accessible sites are saturated at the lowest space velocity. This explains thus the lower conversion levels at a higher space velocity. However, for catalyst C, the evolution of the conversion, which is also depicted in Figure 6, is almost identical for both space velocities. This result could be explained by a better dispersion of the platinum due to the presence of tin. [Pg.83]

The catalyst prepared above was characterized by X-ray diffraction, X-ray photoelectron and Mdssbauer spectroscopic studies. The catalytic activities were evaluated under atmospheric pressure using a conventional gas-flow system with a fixed-bed quartz reactor. The details of the reaction procedure were described elsewhere [13]. The reaction products were analyzed by an on-line gas chromatography. The mass balances for oxygen and carbon beb een the reactants and the products were checked and both were better than 95%. [Pg.398]

As 1,2,5-thiadiazole analogues, potent HlV-1 reverse transcriptase inhibitors, some simple 1,2,5-oxadiazoles, compounds 4-6 (Fig. 9), have been synthesized using the traditional Wieland procedure as key for the heterocycle formation [121]. Such as thiadiazole parent compounds, derivative with chlorine atoms on the phenyl ring, i.e., 5, showed the best anti-viral activity. Selectivity index (ratio of cytotoxic concentration to effective concentration) ranked in the order of 5 > 6 > 4. The activity of Fz derivative 6 proved the N-oxide lack of relevance in the studied bioactivity. These products have been claimed in an invention patent [122]. On the other hand, compound 7 (Fig. 9) was evaluated for its nitric oxide (NO)-releasing property (see below) as modulator of the catalytic activity of HlV-1 reverse transcriptase. It was found that NO inhibited dose-dependently the enzyme activity, which is hkely due to oxidation of Cys residues [123]. [Pg.279]

The catalytic activities of Ni and Ni-Zn nanoclusters with and without Ti02 supports were evaluated through 1-octene hydrogenation. The GC analyses confirmed that... [Pg.398]

For the purpose of demonstrating the effects of surface coverage by Pd, 0pd, on the rate of electro-oxidation of formic acid and the ORR, Fig. 8.17 reveals that the i versus 0Pd relationship again has a volcano-like form, with the maximum catalytic activity being exhibited for 1 ML of Pd. The examples that we have given indicate that volcano relationships are the rule rather than the exception, emphasizing the importance of a systematic evaluation of the catalyst factors that control catalytic activity. A thorough... [Pg.264]

To evaluate the catalytic activity or to investigate the reaction mechanism, planar electrodes with well-defined characteristics such as surface area, surface and bulk compositions, and crystalline structure have often been examined in acidic electrolyte solutions. An appreciable improvement in CO tolerance has been found at Pt with adatoms such as Ru, Sn, and As [Watanabe and Motoo, 1975a, 1976 Motoo and Watanabe, 1980 Motoo et al., 1980 Watanabe et al., 1985], Pt-based alloys Pt-M (M = Ru, Rh, Os, Sn, etc.) [Ross et al., 1975a, b Gasteiger et al., 1994, 1995 Grgur et al., 1997 Ley et al., 1997 Mukeijee et al., 2004], and Pt with oxides (RuO cHy) [Gonzalez and Ticianelli, 2005 Sughnoto et al., 2006]. [Pg.318]

Apart from a few reports" on solid acid catalyzed esterification of model compounds, to our knowledge utilization of solid catalysts for biodiesel production from low quality real feedstocks have been explored only recently. 12-Tungstophosphoric acid (TPA) impregnated on hydrous zirconia was evaluated as a solid acid catalyst for biodiesel production from canola oil containing up to 20 wt % free fatty acids and was found to give ester yield of 90% at 200°C. Propylsulfonic acid-functionalized mesoporous silica catalyst for esterification of FFA in flotation beef tallow showed a superior initial catalytic activity (90% yield) relative to a... [Pg.280]

Each enzyme has a working name, a specific name in relation to the enzyme action and a code of four numbers the first indicates the type of catalysed reaction the second and third, the sub- and sub-subclass of reaction and the fourth indentifies the enzyme [18]. In all relevant studies, it is necessary to state the source of the enzyme, the physical state of drying (lyophilized or air-dried), the purity and the catalytic activity. The main parameter, from an analytical viewpoint is the catalytic activity which is expressed in the enzyme Unit (U) or in katal. One U corresponds to the amount of enzyme that catalyzes the conversion of one micromole of substrate per minute whereas one katal (SI unit) is the amount of enzyme that converts 1 mole of substrate per second. The activity of the enzyme toward a specific reaction is evaluated by the rate of the catalytic reaction using the Michaelis-Menten equation V0 = Vmax[S]/([S] + kM) where V0 is the initial rate of the reaction, defined as the activity Vmax is the maximum rate, [S] the concentration of substrate and KM the Michaelis constant which give the relative enzyme-substrate affinity. [Pg.445]


See other pages where Catalytic activity evaluating is mentioned: [Pg.210]    [Pg.398]    [Pg.67]    [Pg.465]    [Pg.110]    [Pg.658]    [Pg.210]    [Pg.398]    [Pg.67]    [Pg.465]    [Pg.110]    [Pg.658]    [Pg.2483]    [Pg.160]    [Pg.889]    [Pg.639]    [Pg.314]    [Pg.365]    [Pg.398]    [Pg.672]    [Pg.162]    [Pg.200]    [Pg.439]    [Pg.359]    [Pg.538]    [Pg.339]    [Pg.344]    [Pg.63]    [Pg.112]    [Pg.338]    [Pg.343]    [Pg.152]    [Pg.77]    [Pg.255]    [Pg.90]    [Pg.522]    [Pg.192]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



Evaluation of Catalytic Soot Oxidation Activity

Evaluation of catalytic activity

© 2024 chempedia.info