Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst porous material

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

Increasing the surface-to-bulk ratio of the sample to be studied. This is easily done in the case of highly porous materials, and has been exploited for the characterization of supported catalysts, zeolites, sol-gels and porous silicon, to mention a few. [Pg.1779]

The components in catalysts called promoters lack significant catalytic activity tliemselves, but tliey improve a catalyst by making it more active, selective, or stable. A chemical promoter is used in minute amounts (e.g., parts per million) and affects tlie chemistry of tlie catalysis by influencing or being part of tlie catalytic sites. A textural (structural) promoter, on tlie otlier hand, is used in massive amounts and usually plays a role such as stabilization of tlie catalyst, for instance, by reducing tlie tendency of tlie porous material to collapse or sinter and lose internal surface area, which is a mechanism of deactivation. [Pg.2702]

Sodium alumiaate is widely used in the preparation of alumina-based catalysts. Aluminosilicate [1327-36-2] can be prepared by impregnating siHca gel with alumiaa obtained from sodium alumiaate and aluminum sulfate (41,42). Reaction of sodium alumiaate with siHca or siHcates has produced porous crystalline alumiaosiHcates which are useful as adsorbents and catalyst support materials, ie, molecular sieves (qv) (43,44). [Pg.140]

The soHds used as catalysts are typicady robust porous materials with high internal surface areas, typicady, hundreds of square meters per gram. Reaction occurs on the internal catalyst surface. The typical soHd catalyst used ia iadustry is a composite material with aumerous components and a complex stmcture. [Pg.160]

The surfaces of porous materials, e. g. catalysts, molecular sieves, or adsorbents, are much more readily accessible than smooth surfaces to Raman spectroscopy, because larger amounts of adsorbed substance can be placed within the laser focus, thus contributing to the scattering process. [Pg.261]

A further consideration in porous materials is the shape of the pores. Molecules have to diffuse through the pores to feel the effect of the catalytic groups which exist in the interior and, after reaction, the reaction products must diffuse out. These diffusion processes can often be the slowest step in the reaction sequence, and thus pores which allow rapid diffusion will provide the most active catalysts. It is another feature of the MTSs that they have quite straight, cylindrical pores - ideal for the rapid diffusion of molecules. [Pg.67]

By coprecipitating the catalytically active component and the support to give a mixture that is subsequently dried, calcined (heated in air), and reduced to yield a porous material with a high surface area. This procedure is followed when materials are cheap and obtaining the optimum catalytic activity per unit volume of catalyst is the main consideration. [Pg.195]

GP 2] [R 3a] The performance of one micro reactor with three kinds of catalyst -construction material silver, sputtered silver (dense) on aluminum alloy (AlMg3), and sputtered silver on anodically oxidized (porous) aluminum alloy (AlMg3) -was compared with three fixed beds with the same catalysts [44]. The fixed beds were built up by hackled silver foils, aluminum wires (silver sputtered) and hack-led aluminum foils (anodically oxidized and silver sputtered), all having the same catalytic surface area as the micro channels. Results were compared at the same flow rate per unit surface area. [Pg.307]

In heterogeneous catalysis reactions take place at the surface of the catalyst. In order to maximize the production rates, catalysts are, in general, porous materials. In practice, the surface area of catalysts ranges from a few up to 1500 square metres per gram of catalyst. It is instructive to calculate the specific surface area as a function of the particle size. [Pg.68]

Zeolites. In heterogeneous catalysis porosity is nearly always of essential importance. In most cases porous materials are synthesized using the above de.scribed sol-gel techniques resulting in so-called amorphous catalysts. Porosity is introduced in the agglomeration process in which the sol is transformed into a gel. From X-ray Diffraction patterns it is clear that the material shows only weak broad lines, characteristic of non-crystalline materials. Silica and alumina are typical examples. Zeolites are an exception they are crystalline materials but nevertheless exhibit high (micro) porosity. Zeolites belong to the class of molecular sieves, which are porous solids with pores of molecular dimensions, i.e., typically the pore diameter ranges from 0.3 to 10 nm. Examples of molecular sieves are carbons, oxides and zeolites. [Pg.76]

Another way of immobilizing catalyst complexes might be to trap them in the pores of solid particles, for instance by synthesizing the complex inside the pores of a zeolite ( ship in a bottle ). Another method could be to trap catalyst complexes in porous materials and deposit a membrane at the outer. surface. These methods of immobilizing a homogeneous catalyst do not involve chemical linkage between the catalyst and the carrier. The fixation is the result of steric hindrance. [Pg.116]

Improved characterization of the morphological/microstructural properties of porous solids, and the associated transport properties of fluids imbibed into these materials, is crucial to the development of new porous materials, such as ceramics. Of particular interest is the fabrication of so-called functionalized ceramics, which contain a pore structure tailored to a specific biomedical or industrial application (e.g., molecular filters, catalysts, gas storage cells, drug delivery devices, tissue scaffolds) [1-3]. Functionalization of ceramics can involve the use of graded or layered pore microstructure, morphology or chemical composition. [Pg.304]

Various other classes of catalysts have been investigated for NH3-SCR, in particular, metal-containing clays and layered materials [43 15] supported on active carbon [46] and micro- and meso-porous materials [31b,47,48], the latter also especially investigated for HC-SCR [25,3lb,48-53], However, while for NH3-SCR, either for stationary or mobile applications, the performances under practical conditions of alternative catalysts to V-W-oxides supported on titania do not justify their commercial use if not for special cases, the identification of a suitable catalyst, or combination of catalysts, for HC-SCR is still a matter of question. In general terms, supported noble metals are preferable for their low-temperature activity, centred typically 200°C. As commented before, low-temperature activity is a critical issue. However, supported noble metals have a quite limited temperature window of operation. [Pg.4]

At higher reaction temperatures (>300°C), micro- or meso-porous materials and/or oxides containing transition metals are preferable. The performances are considerably dependent on the type of reductant, besides the characteristics of the catalyst and the type of transition metal. Although all possible combinations have been explored, including the usage of high-throughput methods, identification of a suitable catalyst formulation active in HC-SCR under practical conditions, especially to decrease by more than... [Pg.4]

The development of catalysts for the oxidation of organic compounds by air under ambient conditions is of both academic and practical importance (1). Formaldehyde is an important intermediate in synthetic chemistry as well as one of the major pollutants in the human environment (2). While high temperature (> 120 °C) catalytic oxidations are well known (3), low temperature aerobic oxidations under mild conditions have yet to be reported. Polyoxometalates (POMs) are attractive oxidation catalysts because these extensively modifiable metal oxide-like structures have high thermal and hydrolytic stability, tunable acid and redox properties, solubility in various media, etc. (4). Moreover, they can be deposited on fabrics and porous materials to render these materials catalytically decontaminating (5). Here we report the aerobic oxidation of formaldehyde in water under mild conditions (20-40 °C, 1 atm of air or 02) in the presence of Ce-substituted POMs (Ce-POMs). [Pg.429]

One must understand the physical mechanisms by which mass transfer takes place in catalyst pores to comprehend the development of mathematical models that can be used in engineering design calculations to estimate what fraction of the catalyst surface is effective in promoting reaction. There are several factors that complicate efforts to analyze mass transfer within such systems. They include the facts that (1) the pore geometry is extremely complex, and not subject to realistic modeling in terms of a small number of parameters, and that (2) different molecular phenomena are responsible for the mass transfer. Consequently, it is often useful to characterize the mass transfer process in terms of an effective diffusivity, i.e., a transport coefficient that pertains to a porous material in which the calculations are based on total area (void plus solid) normal to the direction of transport. For example, in a spherical catalyst pellet, the appropriate area to use in characterizing diffusion in the radial direction is 47ir2. [Pg.432]

Keywords porous materials, silicoaluminophosphates, solid-state catalysts, structuredirecting agents... [Pg.165]

In this chapter, we demonstrate the potential of such agents as catalysts/promoters in key steps for the derivatization of sugars. The most significant catalytic approaches in carbohydrate chemistry that use aluminosilicate porous materials, namely zeolites and montmorillonite clays, are reviewed and discussed. Silica gel is a porous solid silicate that has also been used for heterogeneous catalysis of organic reactions in general. We include here its usefulness as promoter and reagent support for the reactions under consideration. [Pg.30]

Zeolites have also been described as efficient catalysts for acylation,11 for the preparation of acetals,12 and proved to be useful for acetal hydrolysis13 or intramolecular lactonization of hydroxyalkanoic acids,14 to name a few examples of their application. A number of isomerizations and skeletal rearrangements promoted by these porous materials have also been reported. From these, we can underline two important industrial processes such as the isomerization of xylenes,2 and the Beckmann rearrangement of cyclohexanone oxime to e-caprolactam,15 which is an intermediate for polyamide manufacture. Other applications include the conversion of n-butane to isobutane,16 Fries rearrangement of phenyl esters,17 or the rearrangement of epoxides to carbonyl compounds.18... [Pg.33]

Subsequently, Goncalves cl al.97 reported the acetylation of glycerol with acetic acid performed over different solid acids, including montmorillonite K-10 and such acid zeolites as HZSM-5 and HUSY. Among the siliceous porous materials examined, montmorillonite K-10 gave the best performance, with 96% conversion into the mono-, di- and tri-acetylated derivatives. When zeolites were used, the conversion was lower than with the other catalysts, giving a 30% conversion for HZSM-5 and only 14% for HUSY. However, selectivity for the primary monoacetylated product,... [Pg.56]

Oxidation is a widely used procedure in carbohydrate chemistry, mainly to access sugars that contain a carbonyl function to serve as valuable intermediates for a variety of derivatizations. Many procedures have been developed, employing either chemical or biochemical methodologies.14 148 While most of these methodologies rely on homogeneous catalysis, the use of heterogeneous catalysts has proved to be a feasible alternative.123c However, the utilization of catalysts based on silicon porous materials for the oxidation of carbohydrates is still a field to be further explored. [Pg.74]


See other pages where Catalyst porous material is mentioned: [Pg.505]    [Pg.1987]    [Pg.505]    [Pg.1987]    [Pg.1794]    [Pg.176]    [Pg.262]    [Pg.330]    [Pg.194]    [Pg.489]    [Pg.11]    [Pg.96]    [Pg.32]    [Pg.279]    [Pg.193]    [Pg.1116]    [Pg.392]    [Pg.367]    [Pg.588]    [Pg.251]    [Pg.210]    [Pg.93]    [Pg.272]    [Pg.355]    [Pg.30]    [Pg.561]    [Pg.90]    [Pg.54]    [Pg.226]   
See also in sourсe #XX -- [ Pg.403 ]




SEARCH



Catalyst materials

Catalyst porous

STEADY STATE MATERIAL AND ENTHALPY BALANCES IN POROUS CATALYST PELLETS

© 2024 chempedia.info