Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst characterization reactions

The vapor phase catalytic oxidation of toluene to benzaldehyde has been studied over V20s-K2S04-Si02 catalysts in an isothermal differential reactor. The experiments were carried out at atmospheric pressure, temperatures from 410 C to 470 C and the modified spatial time (W/Fto) ranging from 0 to 180 g cat/mol toluene/h. The experimental tests showed the best performance for the catalyst obtained by co-precipitation. These results may be due to a crystalline phase identified in the process of catalyst characterization. Reaction kinetics was determined using the Mars and van Krevelen model. [Pg.1193]

In Chapter 1 we emphasized that the properties of a heterogeneous catalyst surface are determined by its composition and structure on the atomic scale. Hence, from a fundamental point of view, the ultimate goal of catalyst characterization should be to examine the surface atom by atom under the reaction conditions under which the catalyst operates, i.e. in situ. However, a catalyst often consists of small particles of metal, oxide, or sulfide on a support material. Chemical promoters may have been added to the catalyst to optimize its activity and/or selectivity, and structural promoters may have been incorporated to improve the mechanical properties and stabilize the particles against sintering. As a result, a heterogeneous catalyst can be quite complex. Moreover, the state of the catalytic surface generally depends on the conditions under which it is used. [Pg.129]

The strength of XRD for catalyst characterization is that it gives dear and unequivocal structure information on particles that are sufficiently large, along with an estimate of their size, and it can reveal this information under reaction conditions. The limitation of XRD is that it can not detect partides that are either too small or amor-... [Pg.133]

We have already mentioned that fundamental studies in catalysis often require the use of single crystals or other model systems. As catalyst characterization in academic research aims to determine the surface composition on the molecular level under the conditions where the catalyst does its work, one can in principle adopt two approaches. The first is to model the catalytic surface, for example with that of a single crystal. By using the appropriate combination of surface science tools, the desired characterization on the atomic scale is certainly possible in favorable cases. However, although one may be able to study the catalytic properties of such samples under realistic conditions (pressures of 1 atm or higher), most of the characterization is necessarily carried out in ultrahigh vacuum, and not under reaction conditions. [Pg.166]

The results of the unsteady-state reactivity tests and of the catalysts characterization allow us to propose a model for the active layer of VPP under reaction conditions, illustrated in Figure 55.5. In this model, the surface is in dynamic equilibrium with the gas phase, and its nature is a function of both reaction... [Pg.489]

An NMR and structural study characterized the intermediates generated from diimine catalysts on reaction with diazodiphenylmethane.193 The dominant species in solution is dinuclear, but a monomeric metallocarbene species can be detected. [Pg.921]

There are many industrial situations where reactor designers have opted for selective catalysts or reaction conditions even though they lead to low reactivity. Although large reactor volumes are required, the economics of these situations are more favorable than those leading to high reactivity but low selectivity. The latter situation is characterized by a smaller, cheaper... [Pg.317]

This situation is termed pore-mouth poisoning. As poisoning proceeds the inactive shell thickens and, under extreme conditions, the rate of the catalytic reaction may become limited by the rate of diffusion past the poisoned pore mouths. The apparent activation energy of the reaction under these extreme conditions will be typical of the temperature dependence of diffusion coefficients. If the catalyst and reaction conditions in question are characterized by a low effectiveness factor, one may find that poisoning only a small fraction of the surface gives rise to a disproportionate drop in activity. In a sense one observes a form of selective poisoning. [Pg.464]

In recent years, increasing use has been made of in situ methods in EM—as is true of other techniques of catalyst characterization such as IR, Raman, and NMR spectroscopy, or X-ray diffraction. Although the low mean-free path of electrons prevents EM from being used when model catalysts are exposed to pressures comparable to those prevailing in industrial processes, Gai and Boyes (4) reported early investigations of in situ EM with atomic resolution under controlled reaction conditions to probe the dynamics of catalytic reactions. Direct in situ investigation permits extrapolation to conditions under which practical catalysts operate, as described in Section VIII. [Pg.198]

The catalytic properties of a surface are determined by its composition and structure on the atomic scale. Hence, it is not sufficient to know that a surface consists of a metal and a promoter, say iron and potassium, but it is essential to know the exact structure of the iron surface, including defects, steps, etc., as well as the exact locations of the promoter atoms. Thus, from a fundamental point of view, the ultimate goal of catalyst characterization should be to look at the surface atom by atom, and under reaction conditions. The well-defined surfaces of single crystals offer the best likelihood of atom-by-atom characterization, although occasionally atomic scale information can be obtained from real catalysts under in situ conditions as well, as the examples in Chapter 9 show. [Pg.18]

Catalyst characterization is a lively and highly relevant discipline in catalysis. A literature survey identified over 4000 scientific publications on catalyst characterization in a period of two years [14]. The desire to work with defined materials is undoubtedly present. No less than 78% of the 143 papers presented orally at the 1 llh International Congress on Catalysis [15] contained at least some results on the catalyst(s) obtained by characterization techniques, whereas about 20% of the papers dealt with catalytic reactions over uncharacterized catalysts. Another remarkable fact from these statistics is that about 10% of the papers contained results of theoretical calculations. The trend is clearly to approach catalysis from many different viewpoints with a combination of sophisticated experimental and theoretical tools. [Pg.19]

Characterization techniques become surface sensitive if the particles or radiation to be detected come from the outer layers of the sample. Low energy electrons, ions and neutrals can only travel over distances between one and ten interatomic spacings in the solid state, implying that such particles coming off a catalyst reveal surface-specific information. The inherent disadvantage of the small mean free path is that measurements need to be carried out in vacuum, which conflicts with the wish to investigate catalysts under reaction conditions. [Pg.20]

Temperature programmed desorption (TPD) or thermal desorption spectroscopy (TDS), as it is also called, can be used on technical catalysts, but is particularly useful in surface science, where one studies the desorption of gases from single crystals and polycrystalline foils into vacuum [2]. Figure 2.9 shows a set of desorption spectra of CO from two rhodium surfaces [14]. Because TDS offers interesting opportunities to interpret desorption in terms of reaction kinetic theories, such as the transition state formalism, we will discuss TDS in somewhat more detail than would be justified from the point of view of practical catalyst characterization alone. [Pg.37]

At the fundamental research level, there is a need for in-situ catalyst characterization under reforming conditions in order to understand the nature of active species involved and their stabilities during the reforming reactions. In situ studies to... [Pg.101]

Characterization is a central aspect of catalyst development [1,2], The elucidation of the structures, compositions, and chemical properties of both the solids used in heterogeneous catalysis and the adsorbates and intermediates present on the surfaces of the catalysts during reaction is vital for a better understanding of the relationship between catalyst properties and catalytic performance. This knowledge is essential to develop more active, selective, and durable catalysts, and also to optimize reaction conditions. [Pg.3]

Most of the techniques discussed above are typically used ex situ for catalyst characterization before and after reaction. This is normally the easiest way to carry out the experiments, and is often sufficient to acquire the required information. However, it is known that the reaction environment plays an important role in determining the structure and properties of working catalysts. Consequently, it is desirable to also try to perform catalytic studies under realistic conditions, either in situ [113,114,157, 191-193] or in the so-called operando mode, with simultaneous kinetics measurements [194-196], In addition, advances in high-throughput (also known as combinatorial) catalysis call for the fast and simultaneous analysis of a large number of catalytic samples [197,198], This represents a new direction for further research. [Pg.27]

S.Schimpf, M. Lucas, C. Mohr, U.Rodemerck, A. Bruckner, J.Radnik, H. Hofmeister, andR Claus, Supported gold nanoparticles in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today 72(1—2), 63—78 (2002). [Pg.70]

The chemical structure of the polymers was confirmed by NMR and elemental analysis, and spectroscopically characterized in comparison with monodisperse low molecular weight model compounds. Scheme 5 outlines the approach to the model compounds. Model compounds 31-34 were synthesized by complexation of the ruthenium-free model ligands 29/30 with 3/4. The model ligands were synthesized in toluene/diisopropylamine, in a similar fashion as the polycondensation using Pd(PPh3)4 and Cul as catalyst (Sonogashira reaction) [34,47-49]. [Pg.64]

It is now considered, by most groups working in this area, that vanadyl pyrophosphate (VO)2P207 is the central phase of the Vanadium Phosphate system for butane oxidation to maleic anhydride (7 ). However the local structure of the catalytic sites is still a subject of discussion since, up to now, it has not been possible to study the characteristics of the catalyst under reaction conditions. Correlations have been attempted between catalytic performances obtained at variable temperature (380-430 C) in steady state conditions and physicochemical characterization obtained at room temperature after the catalytic test, sometimes after some deactivation of the catalyst. As a consequence, this has led to some confusion as to the nature of the active phase and of the effective sites. (VO)2P207, V (IV) is mainly detected by X-Ray Diffraction. [Pg.217]

MAS NMR experiments characterizing catalysts in reaction environments in flow systems may be carried out under conditions close to those of industrial processes. The formation of catalytically active surface species and the cause of the deactivation of catalysts can be characterized best under flow conditions. When flow techniques are used for the investigation of reactions under steady-state conditions, a continuous formation and transformation of intermediates occurs. The lifetime of the species under study must be of the order of the length of the free-induction decay, which is ca. 100 ms for " C MAS NMR spectroscopy. [Pg.172]


See other pages where Catalyst characterization reactions is mentioned: [Pg.262]    [Pg.529]    [Pg.2]    [Pg.262]    [Pg.529]    [Pg.2]    [Pg.212]    [Pg.1]    [Pg.188]    [Pg.260]    [Pg.317]    [Pg.228]    [Pg.100]    [Pg.36]    [Pg.198]    [Pg.195]    [Pg.58]    [Pg.134]    [Pg.256]    [Pg.139]    [Pg.165]    [Pg.365]    [Pg.177]    [Pg.189]    [Pg.98]    [Pg.251]    [Pg.306]    [Pg.328]    [Pg.254]    [Pg.255]   


SEARCH



Catalyst characterization

Reaction characterization

© 2024 chempedia.info