Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomeric excess reaction

Further optimization of this reaction was carried out with TFE as an achiral adduct, since reaction with TFE is much faster than that with neopentyl alcohol. We found that dimethyl- and diethylzinc were equally effective, and the chiral zinc reagent could be prepared by mixing the chiral modifier, the achiral alcohol and dialkylzinc reagent in any order without affecting the conversion and selectivity of the reaction. However, the ratio of chiral to achiral modifier does affect the efficiency of the reaction. Less than 1 equiv of the chiral modifier lowered the ee %. For example with 0.8 equiv of 46 the enantiomeric excess of 53 was only 58.8% but with 1 equiv of 46 it was increased to 95.6%. Reaction temperature has a little effect on the enantiomeric excess. Reactions with zinc alkoxide derived for 46 and TFE gave 53 with 99.2% ee at 0°C and 94.0% ee at 40°C. [Pg.33]

Interestingly, G jrey et al.", employing a similar tryptophan-derived catalyst (3.4), observed a 99% enantiomeric excess (ee) in the Diels-Alder reaction of 2-bromoacrolein with cyclopentadiene... [Pg.78]

Evans and co-workers investigated the effect of a number of -symmetric bis(oxazoline) ligands on the copper(II)-catalysed Diels-Alder reaction of an N-acyloxazolidinone with cyclopentadiene. Enantiomeric excesses of up to 99% have been reported (Scheme 3.4). Evans et al." suggested transition state assembly 3.7, with a square planar coordination environment around the central copper ion. In this scheme the dienophile should be coordinated predominantly in an cisoid fashion in... [Pg.80]

Figure 3.3. Enantiomeric excess of the Diels-Alder reaction of 3.8c with 3.9 as a function of the pH. Figure 3.3. Enantiomeric excess of the Diels-Alder reaction of 3.8c with 3.9 as a function of the pH.
Table 3.3. Influence of temperature and ethanol content on the enantiomeric excess of the Diels-Alder reaction between 3.8c and 3.9 catalysed by [Cu(L-tryptophan)] in aqueous... Table 3.3. Influence of temperature and ethanol content on the enantiomeric excess of the Diels-Alder reaction between 3.8c and 3.9 catalysed by [Cu(L-tryptophan)] in aqueous...
Likewise, the influence of the ligand catalyst ratio has been investigated. Increase of this ratio up to 1.75 1 resulted in a slight improvement of the enantioselectivity of the copper(L-tryptophan)-catalysed Diels-Alder reaction. Interestingly, reducing the ligand catalyst ratio from 1 1 to 0.5 1 resulted in a drop of the enantiomeric excess from 25 to 18 % instead of the expected 12.5 %. Hence, as anticipated, ligand accelerated catalysis is operative. [Pg.93]

Table 3.4. Enantiomeric excess and reaction times of the copper(L-abrine)-catalysed Diels-Alder reaction of3.8cwith3.9in different solvents at 0 C. Table 3.4. Enantiomeric excess and reaction times of the copper(L-abrine)-catalysed Diels-Alder reaction of3.8cwith3.9in different solvents at 0 C.
Asymmetric hydrogenation has been achieved with dissolved Wilkinson type catalysts (A. J. Birch, 1976 D. Valentine, Jr., 1978 H.B. Kagan, 1978). The (R)- and (S)-[l,l -binaph-thalene]-2,2 -diylblsCdiphenylphosphine] (= binap ) complexes of ruthenium (A. Miyashita, 1980) and rhodium (A. Miyashita, 1984 R. Noyori, 1987) have been prepared as pure atrop-isomers and used for the stereoselective Noyori hydrogenation of a-(acylamino) acrylic acids and, more significantly, -keto carboxylic esters. In the latter reaction enantiomeric excesses of more than 99% are often achieved (see also M. Nakatsuka, 1990, p. 5586). [Pg.102]

Only reaction 1 provides a direct pathway to this chiral molecule the intermediate 2-methyl-butanal may be silylated and reacted with formaldehyde in the presence of the boronated tartaric ester described on page 61. The enantiomeric excess may, however, be low. [Pg.204]

The reaction is characteristic of the usual Michael addition of hydroperoxide anion, yielding enantiomeric excesses up to 45%. [Pg.412]

S)-l-phenyl-1-ethyl chloride, CH3CH(Cl)Ph, reacts with water in SnI fashion to give (R) and (S)-1-phenyl-1-ethanol, CH3CH(OH)Ph. The product contains a slight excess of inverted (R) alcohol (R S = 59 41). What is the enantiomeric excess, %ee, for this reaction ... [Pg.96]

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

The effect of the metals used was then examined (Table 5.4). When the group 4 metals, titanium, zirconium, and hafnium, were screened it was found that a chiral hafnium catalyst gave high yields and enantioselectivity in the model reaction of aldimine lb with 7a, while lower yields and enantiomeric excesses were obtained using a chiral titanium catalyst [17]. [Pg.192]

Other examples were tested and the results are summarized in Table 5.7 [24]. The reactions always proceeded smoothly to afford the corresponding piperidine derivatives in high yields with high enantiomeric excess. In addition, reverse enantio-... [Pg.196]

Polymer-supported BINOLs thus prepared were treated with Zr(Ot-Bu)4 to form polymer-supported zirconium 20. In the presence of 20 mol% of various zirconium 20, the model aza Diels-Alder reactions of imine Id with Danishefsky s diene (7a) were performed results from selected examples are shown in Table 5.8. Whereas the 4-t-butylphenyl group resulted in lower enantiomeric excess (ee), higher ee were obtained when 3,5-xylyl, 4-biphenyl, 4-fluorophenyl, and 3-tri-... [Pg.199]

Apart from tertiary amines, the reaction may be catalyzed by phosphines, e.g. tri- -butylphosphine or by diethylaluminium iodide." When a chiral catalyst, such as quinuclidin-3-ol 8 is used in enantiomerically enriched form, an asymmetric Baylis-Hillman reaction is possible. In the reaction of ethyl vinyl ketone with an aromatic aldehyde in the presence of one enantiomer of a chiral 3-(hydroxybenzyl)-pyrrolizidine as base, the coupling product has been obtained in enantiomeric excess of up to 70%, e.g. 11 from 9 - -10 ... [Pg.29]

Since most often the selective formation of just one stereoisomer is desired, it is of great importance to develop highly selective methods. For example the second step, the aldol reaction, can be carried out in the presence of a chiral auxiliary—e.g. a chiral base—to yield a product with high enantiomeric excess. This has been demonstrated for example for the reaction of 2-methylcyclopenta-1,3-dione with methyl vinyl ketone in the presence of a chiral amine or a-amino acid. By using either enantiomer of the amino acid proline—i.e. (S)-(-)-proline or (/ )-(+)-proline—as chiral auxiliary, either enantiomer of the annulation product 7a-methyl-5,6,7,7a-tetrahydroindan-l,5-dione could be obtained with high enantiomeric excess. a-Substituted ketones, e.g. 2-methylcyclohexanone 9, usually add with the higher substituted a-carbon to the Michael acceptor ... [Pg.242]

The asymmetric epoxidation of an allylic alcohol 1 to yield a 2,3-epoxy alcohol 2 with high enantiomeric excess, has been developed by Sharpless and Katsuki. This enantioselective reaction is carried out in the presence of tetraisopropoxyti-tanium and an enantiomerically pure dialkyl tartrate—e.g. (-1-)- or (-)-diethyl tartrate (DET)—using tcrt-butyl hydroperoxide as the oxidizing agent. [Pg.254]

The authors describe a clear enhancement of the catalyst activity by the addition of the ionic liquid even if the reaction medium consisted mainly of CH2CI2. In the presence of the ionic liquid, 86 % conversion of 2,2-dimethylchromene was observed after 2 h. Without the ionic liquid the same conversion was obtained only after 6 h. In both cases the enantiomeric excess was as high as 96 %. Moreover, the ionic catalyst solution could be reused several times after product extraction, although the conversion dropped from 83 % to 53 % after five recycles this was explained, according to the authors, by a slow degradation process of the Mn complex. [Pg.233]


See other pages where Enantiomeric excess reaction is mentioned: [Pg.195]    [Pg.471]    [Pg.457]    [Pg.3]    [Pg.84]    [Pg.195]    [Pg.471]    [Pg.457]    [Pg.3]    [Pg.84]    [Pg.1076]    [Pg.79]    [Pg.91]    [Pg.176]    [Pg.126]    [Pg.179]    [Pg.280]    [Pg.344]    [Pg.189]    [Pg.219]    [Pg.6]    [Pg.28]    [Pg.41]    [Pg.123]    [Pg.188]    [Pg.192]    [Pg.195]    [Pg.197]    [Pg.204]    [Pg.207]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.278]    [Pg.735]   


SEARCH



Enantiomeric excess

Excessive reaction

© 2024 chempedia.info