Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylates nomenclature

It IS hard to find a class of compounds in which the common names of its members have influenced organic nomenclature more than carboxylic acids Not only are the common names of carboxylic acids themselves abundant and widely used but the names of many other compounds are derived from them Benzene took its name from benzoic acid and propane from propionic acid not the other way around The name butane comes from butyric acid present m rancid butter The common names of most aldehydes are derived from the common names of carboxylic acids—valeraldehyde from valeric acid for exam pie Many carboxylic acids are better known by common names than by their systematic ones and the framers of the lUPAC rules have taken a liberal view toward accepting these common names as permissible alternatives to the systematic ones Table 19 1 lists both common and systematic names for a number of important carboxylic acids... [Pg.792]

This chapter concerns the preparation and reactions of acyl chlorides acid anhydrides thioesters esters amides and nitriles These com pounds are generally classified as carboxylic acid derivatives and their nomenclature is based on that of carboxylic acids... [Pg.874]

The common method of naming aldehydes corresponds very closely to that of the related acids (see Carboxylic acids), in that the term aldehyde is added to the base name of the acid. For example, formaldehyde (qv) comes from formic acid, acetaldehyde (qv) from acetic acid, and butyraldehyde (qv) from butyric acid. If the compound contains more than two aldehyde groups, or is cycHc, the name is formed using carbaldehyde to indicate the functionaUty. The lUPAC system of aldehyde nomenclature drops the final e from the name of the parent acycHc hydrocarbon and adds al If two aldehyde functional groups are present, the suffix -dialis used. The prefix formjlis used with polyfunctional compounds. Examples of nomenclature types are shown in Table 1. [Pg.469]

The nomenclature of penicillins requires special comment. Compound (2) can be named as follows (a) penicillin G (b) benzylpenicillin (note that the term penicillin may refer to the compound class (1), to the structural fragment (3) or, especially in the medical literature, to compound (2) itself) (c) 6/3-phenylacetamidopenicillanic acid (d) 2,2-dimethyl-6/3-phenylacetamidopenam-3a -carboxylic acid (e) (2S,5i ,6i )-3,3-di-methyl-7-oxo-6-(2-phenylacetamido)-4-thia-l-azabicyclo[3.2.0]heptane-2-carboxylic acid and (f) [2S-(2a,5a,6/3)]-3,3-dimethyl-7-oxo-6-[(phenylacetyl)amino]-4-thia-l-azabicyclo-[3.2.0]heptane-2-carboxylic acid. The numbered system shown in (2) is the one most commonly used in the penicillin literature and will be used in this chapter note that different number is used when (2) is named according to (e) and (f) above. [Pg.300]

Azabicyclo[4.2.l]nona-2,4-diene-9-carboxylic acid, 7-0X0-ethyl ester synthesis, 7, 524 Azabi cyclononadienones synthesis, 7, 524 1 -Azabi cyclo[5.2.0]nonane nomenclature, 7, 342... [Pg.519]

Naphthothiazole-2-carboxylic acid decarboxylation, 6, 279 Naphthothiene nomenclature, 1, 21 Naphthothiete, S-methyl-reactions... [Pg.706]

Phenanthridine-6-carboxylic acids synthesis, 2, 415 Phenanthridines amination, 2, 236 bromination, 2, 320 hydrogenation, 2, 328 nitration, 2, 319 nomenclature, 2, 5 5-oxides... [Pg.740]

Figure 1.2 Proteins are built up by amino acids that are linked by peptide bonds to form a polypeptide chain, (a) Schematic diagram of an amino acid. Illustrating the nomenclature used in this book. A central carbon atom (Ca) is attached to an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (H), and a side chain (R). (b) In a polypeptide chain the carboxyl group of amino acid n has formed a peptide bond, C-N, to the amino group of amino acid + 1. One water molecule is eliminated in this process. The repeating units, which are called residues, are divided into main-chain atoms and side chains. The main-chain part, which is identical in all residues, contains a central Ca atom attached to an NH group, a C =0 group, and an H atom. The side chain R, which is different for different residues, is bound to the Ca atom. Figure 1.2 Proteins are built up by amino acids that are linked by peptide bonds to form a polypeptide chain, (a) Schematic diagram of an amino acid. Illustrating the nomenclature used in this book. A central carbon atom (Ca) is attached to an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (H), and a side chain (R). (b) In a polypeptide chain the carboxyl group of amino acid n has formed a peptide bond, C-N, to the amino group of amino acid + 1. One water molecule is eliminated in this process. The repeating units, which are called residues, are divided into main-chain atoms and side chains. The main-chain part, which is identical in all residues, contains a central Ca atom attached to an NH group, a C =0 group, and an H atom. The side chain R, which is different for different residues, is bound to the Ca atom.
A summary of nomenclature rules for carboxylic acid derivatives is given in Table 21.1. [Pg.788]

Chromium, (ri6-benzene)tricarbonyl-stereochemistry nomenclature, 1,131 Chromium complexes, 3,699-948 acetylacetone complex formation, 2,386 exchange reactions, 2,380 amidines, 2,276 bridging ligands, 2,198 chelating ligands, 2,203 anionic oxo halides, 3,944 applications, 6,1014 azo dyes, 6,41 biological effects, 3,947 carbamic acid, 2,450 paddlewheel structure, 2, 451 carboxylic acids, 2,438 trinuclear, 2, 441 carcinogenicity, 3, 947 corroles, 2, 874 crystal structures, 3, 702 cyanides, 3, 703 1,4-diaza-1,3-butadiene, 2,209 1,3-diketones... [Pg.102]

A Nomenclature—counts from carboxylate end. co Nomenclature—counts from methyl end. [Pg.173]

According to the IUPAC-IUB Enzyme Nomenclature,11 pectinesterase belongs to the carboxyl ester hydrolases (EC 3.1.1.11) and has the systematic name pectin pectyl-hydrolase. The literature also contains the expressions pectin methylesterase, pectin demethoxylase, and pectin methoxylase for the same enzyme. The old name pectase,... [Pg.324]

FIGURE B-1 Structures of some fatty acids of neurochemical interest (see also Fig. 3-7 and text). The n minus nomenclature for the position of the double bond(s) is given here. Note that the position of the double bond from the carboxyl end can be indicated by the symbol A, so that linoleic acid may be also be designated as 18 2A9,12. The linolenic acid shown is the a isomer. [Pg.35]


See other pages where Carboxylates nomenclature is mentioned: [Pg.792]    [Pg.831]    [Pg.831]    [Pg.29]    [Pg.164]    [Pg.286]    [Pg.642]    [Pg.760]    [Pg.792]    [Pg.831]    [Pg.831]    [Pg.788]    [Pg.50]    [Pg.85]    [Pg.160]    [Pg.215]    [Pg.175]    [Pg.29]    [Pg.34]    [Pg.38]    [Pg.560]    [Pg.1]    [Pg.48]    [Pg.66]   
See also in sourсe #XX -- [ Pg.787 ]

See also in sourсe #XX -- [ Pg.746 ]




SEARCH



Carboxylate salts nomenclature

Carboxylic acid Organic compound nomenclature

Carboxylic acid anhydrides nomenclature

Carboxylic acid derivatives nomenclature

Carboxylic acids [continued) nomenclature

Carboxylic acids functional class nomenclature

Carboxylic acids nomenclature

Carboxylic acids, functional derivatives nomenclature

Esters, carboxylic acid nomenclature

Nomenclature and Properties of Carboxylic Acids

Nomenclature carboxylate anions

Nomenclature of carboxylic acid anhydrides

Nomenclature of carboxylic acid derivatives

Nomenclature of carboxylic acids

Nomenclature with carboxylic acid

The Nomenclature of Carboxylic Acids

© 2024 chempedia.info