Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition carbonyls

The target compound is searched for a rctron. A retron is the structural subunit required to be present in the target in order to apply a transform. In Figure 10,3-30 the rctron of a Michael addition is a sequence of five carbon atoms with two carbonyl functions in the 1,5-position. For a Michael addition transform to be applied, it has to be present,... [Pg.570]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

The synthesis of spiro compounds from ketones and methoxyethynyl propenyl ketone exemplifies some regioselectivities of the Michael addition. The electrophilic triple bond is attacked first, next comes the 1-propenyl group. The conjugated keto group is usually least reactive. The ethynyl starting material has been obtained from the addition of the methoxyethynyl anion to the carbonyl group of crotonaldehyde (G. Stork, 1962 B, 1964A). [Pg.74]

Stabilized anions exhibit a pronounced tendency to undergo conjugate addition to a p unsaturated carbonyl compounds This reaction called the Michael reaction has been described for anions derived from p diketones m Section 18 13 The enolates of ethyl acetoacetate and diethyl malonate also undergo Michael addition to the p carbon atom of a p unsaturated aldehydes ketones and esters For example... [Pg.901]

Methyl group (Section 2 7) The group —CH3 Mevalonic acid (Section 26 10) An intermediate in the biosyn thesis of steroids from acetyl coenzyme A Micelle (Section 19 5) A sphencal aggregate of species such as carboxylate salts of fatty acids that contain a lipophilic end and a hydrophilic end Micelles containing 50-100 car boxylate salts of fatty acids are soaps Michael addition (Sections 18 13 and 21 9) The conjugate ad dition of a carbanion (usually an enolate) to an a 3 unsatu rated carbonyl compound... [Pg.1288]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

The mechanism of both syntheses has been studied in detail, and well summarized (44,45). Interesting questions remain for example, in neither of these sequences is it certain whether the carbonyl compound or its Schiff base is undergoing Michael addition. [Pg.391]

Hydrogen cyanide adds to an olefinic double bond most readily when an adjacent activating group is present in the molecule, eg, carbonyl or cyano groups. In these cases, a Michael addition proceeds readily under basic catalysis, as with acrylonitrile (qv) to yield succinonitnle [110-61-2], C4H4N2, iu high yield (13). Formation of acrylonitrile by addition across the acetylenic bond can be accompHshed under catalytic conditions (see Acetylene-DERIVED chemicals). [Pg.376]

Remarkably few examples of this type of ring construction are available. The cobalt carbonyl hydride catalyzed hydroformylation of A/,A/ -diallylcarbamates has provided 3-pyrrolidinones (Scheme 61a) (81JOC4433). The pyrrole synthesis shown in Scheme 61b depends on Michael addition of ethyl a-lithioisocyanoacetate to ethyl a-isocyanocrotonate (77LA1174). [Pg.123]

Michael addition (Sections 18.13 and 21.9) The conjugate addition of a carbanion (usually an enolate) to an a,(3-unsatu-rated carbonyl compound. [Pg.1288]

When the enamine is in conjugation with a carbonyl function, as in a-aminomethylene aldehydes (528,529), ketones (530), or esters (531), a Michael addition is found in vinylogous analogy to the reactions of amides. An application to syntheses in the vitamin A series employed a vinyl lithium compound (532). [Pg.424]

Vinylogous amides undergo reduction with lithium aluminum hydride, by Michael addition of hydride and formation of an enolate, which can resist further reduction. Thus -aminoketones are usually produced (309, 563,564). However, the alternative selective reduction of the carbonyl group has also been claimed (555). [Pg.431]

Michael addition reaction of 1-hydroxytryptamines to Q ,/3-unsaturated carbonyl compounds is worthy of note (99H2815). Addition of Ab-acetyl- 1-hydroxy-tryptamine (39) to methyl acrylate and methyl crotonate in the presence of... [Pg.109]

The formation of Zj -adducts—e.g. 8 by a consecutive Michael addition reaction, is observed in some cases. This reaction is formulated as a 1,4-addition of a second molecule of the CH-acidic starting material 2 to the initially formed a ,/3-unsaturated carbonyl compound 3 ... [Pg.178]

The 1,4-addition of an enolate anion 1 to an o ,/3-unsaturated carbonyl compound 2, to yield a 1,5-dicarbonyl compound 3, is a powerful method for the formation of carbon-carbon bonds, and is called the Michael reaction or Michael addition The 1,4-addition to an o ,/3-unsaturated carbonyl substrate is also called a conjugate addition. Various other 1,4-additions are known, and sometimes referred to as Michael-like additions. [Pg.201]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

Enamines react with acceptor-substituted alkenes (Michael acceptors) in a conjugate addition reaction for example with o ,/3-unsaturated carbonyl compounds or nitriles such as acrylonitrile 8. With respect to the acceptor-substituted alkene the reaction is similar to a Michael addition ... [Pg.268]

Incorporation of a carbonyl group into the alkyl side chain also proved compatible with biologic activity. The key intermediate (76) is obtainable by Michael addition of the anion from diethyl malonate to methylvinyl ketone followed by ketalization with ethylene glycol. Condensation of 76 with hydrazobenzene leads to the pyrazolodione hydrolysis of the ketal group affords ketasone (78). ... [Pg.237]

The Michael addition of nih oalkanes to alkenes substituted with two elecbon-withdrawing groups at the a- and 3-positions provides a new method for the preparation of functionalized alkenes. Although reactions are not new, Ballini and coworkers have used this sbategy in the synthesis of polyfunctionalized unsaturated carbonyl derivatives by Michael addition of nih oalkanes to enediones as shown in Eqs. 7.124-7.126. Success of this type of reaction depends on the base and solvent. They have found that DBU in acetonihile is the method of choice for this puipose. This base-solvent system has been used widely in Michael additions of nitroalkanes to elechon-deficient alkenes (see Section 4.3, which discusses the Michael addition). ... [Pg.220]

Enamines behave in much the same way as enolate ions and enter into many of the same kinds of reactions. In the Stork reaction, for example, an enamine adds to an aqQ-unsaturated carbonyl acceptor in a Michael-like process. The initial product is then hydrolyzed by aqueous acid (Section 19.8) to yield a 1,5-dicarbonyi compound. The overall reaction is thus a three-step sequence of (11 enamine formation from a ketone, (2) Michael addition to an a,j3-unsaturated carbonyl compound, and (3) enamine hydrolysis back to a ketone. [Pg.897]

The net effect of the Stork reaction is the Michael addition of a ketone to an cn/3-unsaturated carbonyl compound. For example, cyclohexanone reacts with the. cyclic amine pyrrolidine to yield an enamine further reaction with an enone such as 3-buten-2-one yields a Michael adduct and aqueous hydrolysis completes the sequence to provide a 1,5-diketone (Figure 23.8). [Pg.897]

Strategy The overall result of an enamine reaction is the Michael addition of a ketone as donor to an cr,/3-unsaturated carbonyl compound as acceptor, yielding a 1,5-dicarbonyl product. The C—C bond made in the Michael addition step is the one between the a- carbon of the ketone donor and the /3 carbon of the unsaturated acceptor. [Pg.898]

Carbonyl condensation reactions are widely used in synthesis. One example of their versatility is the Robinson anuulation reaction, which leads to the formation of an substituted cyclohexenone. Treatment of a /3-diketone or /3-keto ester with an a,/3-unsaturated ketone leads first to a Michael addition, which is followed by intramolecular aldol cyclization. Condensation reactions are also used widely in nature for the biosynthesis of such molecules as fats and steroids. [Pg.905]

After reduction of the nitro function of the porphyrin, the porphyrinamine intermediate can be reacted with z./l-unsaturated carbonyl compounds to yield porphyrins with a fused pyridine ring, which is formed by Michael addition, imine formation and dehydrogenation. [Pg.609]

Table 6. Michael Addition of Carbonyl Compounds to Enones and Enoates with Crown Ethers or Quaternary Salts as Chiral Catalysts Crown Ethers ... Table 6. Michael Addition of Carbonyl Compounds to Enones and Enoates with Crown Ethers or Quaternary Salts as Chiral Catalysts Crown Ethers ...
High enantioselectivities may be reached using the kinetic controlled Michael addition of achiral tin enolates, prepared in situ, to a,/i-unsaturated carbonyl compounds catalyzed by a chiral amine. The presence of trimethylsilyl trifluoromethanesulfonate as an activator is required in these reactions236. Some typical results, using stoichiometric amounts of chiral amine and various enolates are given below. In the case of the l-(melhylthio)-l-[(trimethylsilyl)thio]ethene it is proposed that metal exchange between the tin(II) trifluoromethanesulfonate and the ketene acetal occurs prior to the 1,4-addition237,395. [Pg.985]

Few a-ketosulphoxides 123 were prepared by trapping the enolate anions 124, which are generated by the Michael addition of Grignard reagents to easily available a, jS-unsaturated carbonyl compounds 125, with methanesulphinyl chloride174 (equation 65). [Pg.263]

In this section alkylation, Michael additions, hydroxyalkylation (reaction with carbonyl compounds), aminoalkylation, acylation and some other reactions of a-sulphinyl carbanions will be discussed. [Pg.305]

Michael addition is a 1,4-addition reaction of a nucleophile to an a, /1-unsaturated system in which the double bond is conjugated with a carbonyl group, enabling the formation of the corresponding enolate as an intermediate (equation 27). [Pg.410]

In principle, numerous reports have detailed the possibility to modify an enzyme to carry out a different type of reaction than that of its attributed function, and the possibility to modify the cofactor of the enzyme has been well explored [8,10]. Recently, the possibility to directly observe reactions, normally not catalyzed by an enzyme when choosing a modified substrate, has been reported under the concept of catalytic promiscuity [9], a phenomenon that is believed to be involved in the appearance of new enzyme functions during the course of evolution [23]. A recent example of catalytic promiscuity of possible interest for novel biotransformations concerns the discovery that mutation of the nucleophilic serine residue in the active site of Candida antarctica lipase B produces a mutant (SerlOSAla) capable of efficiently catalyzing the Michael addition of acetyl acetone to methyl vinyl ketone [24]. The oxyanion hole is believed to be complex and activate the carbonyl group of the electrophile, while the histidine nucleophile takes care of generating the acetyl acetonate anion by deprotonation of the carbon (Figure 3.5). [Pg.69]

In certain cases, Michael reactions can take place under acidic conditions. Michael-type addition of radicals to conjugated carbonyl compounds is also known.Radical addition can be catalyzed by Yb(OTf)3, but radicals add under standard conditions as well, even intramolecularly. Electrochemical-initiated Michael additions are known, and aryl halides add in the presence of NiBr2. Michael reactions are sometimes applied to substrates of the type C=C—Z, where the co-products are conjugated systems of the type C=C—Indeed, because of the greater susceptibility of triple bonds to nucleophilic attack, it is even possible for nonactivated alkynes (e.g., acetylene), to be substrates in this... [Pg.1024]

The application of 3-aminopropyl phosphine (3) [41,46] as a building block for incorporation into -COOH functionalized frameworks provides an excellent example of the utility of preformed primary phosphine frameworks (Scheme 8) [46]. The reactions involved Michael addition of ferf-butyl acrylate to malonic acid dimethyl ester to produce the intermediate adduct, 2-methoxycarbonyl-pentanedioc acid 5-ferf-butyl ester 1-methyl ester, which upon treatment with trifluro-acetic acid (TFA) produced the corresponding diester acid,2-methoxy-carbonyl-pentanedioic acid 1-methyl ester, in near quantitative yield. It is remarkable to note that the reaction of NH2(CH2)3PH2 (3) with the diester acid is highly selective as the -COOH group remained unattacked whereas the reaction occurred smoothly and selectively at the -COOMe groups to pro-... [Pg.128]

Control will be needed for the Michael addition, and it proved necessary to protect one carbonyl of (14) as an acetal and add an activating group to the other to give (16), There is no ambiguity in either of these steps as protection of one carbonyl also deactivates the other (Chapter T5) and (15) can enolise on one side only. Removal of the acetal from (17), cyclisation, and decarboxylation can all be accomplished in one step. Synthesis ... [Pg.404]

In a similar way, lipases catalyze Michael addition of amines, thiols [110], and even 1,3-dicarbonyl derivatives [111, 112] to a,/ -unsaturated carbonyl compounds (Scheme 5.21). [Pg.113]

Scheme 5.21 Lipase-catalyzed Michael additions to a./J-unsaturated carbonyl compounds. Scheme 5.21 Lipase-catalyzed Michael additions to a./J-unsaturated carbonyl compounds.

See other pages where Michael addition carbonyls is mentioned: [Pg.65]    [Pg.123]    [Pg.145]    [Pg.41]    [Pg.143]    [Pg.378]    [Pg.123]    [Pg.104]    [Pg.328]    [Pg.347]    [Pg.22]    [Pg.119]    [Pg.320]    [Pg.323]    [Pg.77]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



Carbonyl compounds Michael addition

Carbonyl compounds Michael addition acceptors

Carbonyl compounds by Michael addition

Carbonyl, addition

Carbonylation additive

Conjugate Carbonyl Additions The Michael Reaction

Enone, conjugate carbonyl addition Michael reactions

Michael addition unsaturated carbonyl compound

Michael addition, acidic carbonyl compounds

© 2024 chempedia.info