Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition, acidic carbonyl compounds

Simple addition to carbonyl compounds occnrs nnder mild acidic conditions. Examples given illns-trate reaction with acetone, an aldol-like reaction, and conjngate addition to methyl vinyl ketone, a Michael-like reaction. The first-formed alcohol products in aldol-like reactions usually dehydrate to give a 3-alkylidene-3//-indolium cation. [Pg.445]

The cation fragment nature exerts negligible impact on selectivity of the Michael reactions that involve enamine intermediates and commonly the stereochemical outcome remains high. Indeed, pyrrolidine derivatives (Figure 22.6) containing pyridinium 87a,b [98], isoquinolinium 88a,b [99], 1,2,3-triazolium 89a,b [100], benzimidazolium 90 [101], and linear 91 [102] or cyclic 92 [103] quaternary ammonium cations in combination with various anions proved efficient catalysts of asymmetric additions of carbonyl compounds to a-nitro alkenes. Desymmetriza-tion of prochiral 4-substituted cyclohexanones can be achieved by analogy [101]. The reaction efficacy was similar under neat conditions in the presence of acidic additives (catalysts 87, 89, 90, 91) or in the IL medium (commonly in [bmim]BF4) (catalysts 88a,b, 92). [Pg.639]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

Methyl group (Section 2 7) The group —CH3 Mevalonic acid (Section 26 10) An intermediate in the biosyn thesis of steroids from acetyl coenzyme A Micelle (Section 19 5) A sphencal aggregate of species such as carboxylate salts of fatty acids that contain a lipophilic end and a hydrophilic end Micelles containing 50-100 car boxylate salts of fatty acids are soaps Michael addition (Sections 18 13 and 21 9) The conjugate ad dition of a carbanion (usually an enolate) to an a 3 unsatu rated carbonyl compound... [Pg.1288]

Methacryhc acid and its ester derivatives are Ctfjy -unsaturated carbonyl compounds and exhibit the reactivity typical of this class of compounds, ie, Michael and Michael-type conjugate addition reactions and a variety of cycloaddition and related reactions. Although less reactive than the corresponding acrylates as the result of the electron-donating effect and the steric hindrance of the a-methyl group, methacrylates readily undergo a wide variety of reactions and are valuable intermediates in many synthetic procedures. [Pg.246]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

The formation of Zj -adducts—e.g. 8 by a consecutive Michael addition reaction, is observed in some cases. This reaction is formulated as a 1,4-addition of a second molecule of the CH-acidic starting material 2 to the initially formed a ,/3-unsaturated carbonyl compound 3 ... [Pg.178]

The overall process is the addition of a CH-acidic compound to the carbon-carbon double bond of an o ,/3-unsaturated carbonyl compound. The Michael reaction is of particular importance in organic synthesis for the construction of the carbon skeleton. The above CH-acidic compounds usually do not add to ordinary carbon-carbon double bonds. Another and even more versatile method for carbon-carbon bond formation that employs enolates as reactive species is the aldol reaction. [Pg.202]

Enamines behave in much the same way as enolate ions and enter into many of the same kinds of reactions. In the Stork reaction, for example, an enamine adds to an aqQ-unsaturated carbonyl acceptor in a Michael-like process. The initial product is then hydrolyzed by aqueous acid (Section 19.8) to yield a 1,5-dicarbonyi compound. The overall reaction is thus a three-step sequence of (11 enamine formation from a ketone, (2) Michael addition to an a,j3-unsaturated carbonyl compound, and (3) enamine hydrolysis back to a ketone. [Pg.897]

In certain cases, Michael reactions can take place under acidic conditions. Michael-type addition of radicals to conjugated carbonyl compounds is also known.Radical addition can be catalyzed by Yb(OTf)3, but radicals add under standard conditions as well, even intramolecularly. Electrochemical-initiated Michael additions are known, and aryl halides add in the presence of NiBr2. Michael reactions are sometimes applied to substrates of the type C=C—Z, where the co-products are conjugated systems of the type C=C—Indeed, because of the greater susceptibility of triple bonds to nucleophilic attack, it is even possible for nonactivated alkynes (e.g., acetylene), to be substrates in this... [Pg.1024]

The decarboxylation reaction usually proceeds from the dissociated form of a carboxyl group. As a result, the primary reaction intermediate is more or less a carbanion-like species. In one case, the carbanion is stabilized by the adjacent carbonyl group to form an enolate intermediate as seen in the case of decarboxylation of malonic acid and tropic acid derivatives. In the other case, the anion is stabilized by the aid of the thiazolium ring of TPP. This is the case of transketolases. The formation of carbanion equivalents is essentially important in the synthetic chemistry no matter what methods one takes, i.e., enzymatic or ordinary chemical. They undergo C—C bond-forming reactions with carbonyl compounds as well as a number of reactions with electrophiles, such as protonation, Michael-type addition, substitution with pyrophosphate and halides and so on. In this context,... [Pg.337]

Rhodium(i) complexes are excellent catalysts for the 1,4-addition of aryl- or 1-alkenylboron, -silicon, and -tin compounds to a,/3-unsaturated carbonyl compounds. In contrast, there are few reports on the palladium(n) complex-catalyzed 1,4-addition to enones126,126a for the easy formation of C-bound enolate, which will result in /3-hydride elimination product of Heck reaction. Previously, Cacchi et al. described the palladium(n)-catalyzed Michael addition of ArHgCl or SnAr4 to enones in acidic water.127 Recently, Miyaura and co-workers reported the 1,4-addition of arylboronic acids and boroxines to a,/3-unsaturated carbonyl compounds. A cationic palladium(n) complex [Pd(dppe)(PhCN)2](SbF6)2 was found to be an excellent catalyst for this reaction (dppe = l,2-bis(diphenyl-phosphine)ethane Scheme 42).128... [Pg.389]

Intermediates such as 224 resulting from the nudeophilic addition of C,H-acidic compounds to allenyl ketones such as 222 do not only yield simple addition products such as 225 by proton transfer (Scheme 7.34) [259]. If the C,H-acidic compound contains at least one carbonyl group, a ring dosure is also possible to give pyran derivatives such as 226. The reaction of a similar allenyl ketone with dimethyl mal-onate, methyl acetoacetate or methyl cyanoacetate leads to a-pyrones by an analogous route however, the yields are low (20-32%) [260], The formation of oxaphos-pholenes 229 from ketones 227 and trivalent phosphorus compounds 228 can similarly be explained by nucleophilic attack at the central carbon atom of the allene followed by a second attack of the oxygen atom of the ketone at the phosphorus atom [261, 262], Treatment of the allenic ester 230 with copper(I) chloride and tributyltin hydride in N-methylpyrrolidone (NMP) affords the cephalosporin derivative 232 [263], The authors postulated a Michael addition of copper(I) hydride to the electron-... [Pg.389]

Aromatic aldehydes react very easily with tetramic acid under acidic conditions to give 3-benzylidene compounds (41). The yields are moderate, because often there are subsequent reactions. As a,/3-unsaturated carbonyl compounds, (41) react in a Michael addition with excess tetramic acid to form (67), but it can also react with other acyclic and cyclic 1,3-dicarbonyl compounds. In these reactions the aryl substituents may vary over a wide range. Thus, (67) and (68) can be cyclized with ammonium acetate to afford pharmacologically interesting compounds (70) and (71) (90TH1). The latter are dihydropyridines. Curiously, (69) does not cyclize under these conditions. (See Fig. 32.)... [Pg.169]

Michael addition of a carbanion derived from an acid derivative to an unsaturated carbonyl compound typifies syntheses of type (i) in Scheme 85. [Pg.789]

The two most commonly used types of allyl alcohol linker are 4-hydroxycrotonic acid derivatives (Entry 1, Table 3.7) and (Z)- or ( )-2-butene-l, 4-diol derivatives (Entries 2 and 3, Table 3.7). The former are well suited for solid-phase peptide synthesis using Boc methodology, but give poor results when using the Fmoc technique, probably because of Michael addition of piperidine to the a, 3-unsaturated carbonyl compound [167]. Butene-l,4-diol derivatives, however, are tolerant to acids, bases, and weak nucleophiles, and are therefore suitable linkers for a broad range of solid-phase chemistry. [Pg.55]

Resin-bound amines can be converted into imines [710,711] or enamines by reaction with carbonyl compounds (Entries 6 and 7, Table 3.39). Resin-bound enamines have also been prepared by Michael addition of resin-bound secondary amines to acceptor-substituted alkynes [712], by Hg(II)-catalyzed addition of resin-bound secondary amines to unactivated alkynes [713], by addition of C-nucleophiles to resin-bound imino ethers [714], and by chemical modification of other resin-bound enamines [712,713,715], Acceptor-substituted enamines ( push-pull alkenes) are not always susceptible to hydrolytic cleavage by TFA alone and might require aqueous acids to undergo hydrolysis [716]. [Pg.119]

The proposed reaction course involves the initial Michael-type addition of the olefin to the Lewis acid activated unsaturated carbonyl compound, forming regioselectively a selenocarbenium ion (i). Subsequent 1,2-silyl migration (//), Se-bridging Hi) and 1,3-ring... [Pg.514]

In the case of 1,3-thiazine-2-ylidene compounds, hydrolysis of N-methylimino-5-ethoxycarbonyl-l,3-thiazine 188 (R = Me) is carried out in an acid medium. Formic acid does not react. Incorporation of water was found in the course of subsequent research (formic acid/aqueous triethyla-mine either formic acid or acetic acid/water 50-50 formic acid/aqueous formaldehyde) and resulted in the isolation of three compounds 5-ethoxy-carbonyl-2-oxo-2,3-dihydro-6//-l, 3-thiazine (189), 5-ethoxycarbonyl-l-methyl-2-thioxo-l,2,3,4-tetrahydropyrimidine (190) and 5-ethoxy-car-bonyl-3-methyl-2-thioxo-l, 2,3,4-tetrahydropyrimidine (191). The authors have proposed a mechanism involving cleavage of the C-6-S bond and reclosure of the six-membered ring by a Michael addition (Scheme 75). [Pg.133]


See other pages where Michael addition, acidic carbonyl compounds is mentioned: [Pg.406]    [Pg.43]    [Pg.108]    [Pg.352]    [Pg.352]    [Pg.361]    [Pg.65]    [Pg.323]    [Pg.1014]    [Pg.323]    [Pg.316]    [Pg.55]    [Pg.132]    [Pg.135]    [Pg.50]    [Pg.652]    [Pg.261]    [Pg.185]    [Pg.145]    [Pg.303]    [Pg.563]    [Pg.353]    [Pg.74]    [Pg.456]    [Pg.987]    [Pg.844]    [Pg.65]   
See also in sourсe #XX -- [ Pg.1046 ]




SEARCH



Acidic carbonyl

Carbonyl Michael addition

Carbonyl compounds Michael addition

Carbonyl compounds, addition

Carbonyl, addition

Carbonylation additive

© 2024 chempedia.info