Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds epoxidation

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

S. Akutagawa and S. Otsuka, J. Amer. Chem. Soc., 1976, 98, 7420 the formula for isogeraniol lacks the 6,7-double bond and the diene minor product is named incorrectly. No experimental details are given for the hydrolysis of this myrcene-magnesium complex but the results contradict those reported by Cookson et al. who have extensively investigated its reactions with carbonyl compounds, epoxides, carbon dioxide, and acetonitrile. ... [Pg.23]

Allyl- and vinylsilane chemistry was one of the first areas of reagent synthesis impacted by CM methodology. Allylsilanes are commonly employed in nucleophilic additions to carbonyl compounds, epoxides, and Michael acceptors (the Sakurai reaction) vinylsilanes are useful reagents for palladium-coupling reactions. As the ubiquitous application of CM to this substrate class has recently been described in several excellent reviews, this topic will not be discussed in detail, with the exception of the use of silane moieties to direct CM stereoselectivity (previously discussed in Section 11.06.3.2). [Pg.188]

Substituted cyclobutenes 2-substituted 1,3-dienes. The reagent reacts with various electrophiles (alkyl halides, carbonyl compounds, epoxides) to give the corresponding selenides, jS-hydroxy- and y-hydroxyselenides, respectively. Three methods can be used to convert these adducts to cyclobutenes, as shown in equations... [Pg.233]

A very different type of chemistry occurs when sulfur ylids add to carbonyl compounds. Epoxides are formed and recent progress with chiral sulfur ylids allows good asymmetric induction in this reaction. The easily prepared C2 symmetric sulfide 96 reacts with alkyl halides and then with aryl and alkyl aldehydes to give good yields of trans epoxides 97 with reasonable ees.19... [Pg.516]

To date, many electrophilic reagents, such as alkyl halides, alkenes, alkynes, carbonyl compounds, epoxides, alcohols, and ethers, have been investigated in AFC alkylation reactions. On the other hand, the reactive 5-membered heteroaromatic compounds, such as indole, pyrrole, furan, and thiophene derivatives, and electron-rich benzene derivatives have been successfully applied in AFC alkylation reactions. Indole and pyrrole derivatives are most popular substrates due to their high reactivity and account for almost 80% of the published methodologies. A variety of chiral organometal-lic catalysts and organocatalysts are employed in the catalytic AFC alkylation reactions with high enantiomeric control. [Pg.215]

A review in Russian on the synthesis of carbohydrates from formaldehyde has appeared. An investigation of the formose reaction by g.c.-n.m.r. has shown that intermediate glycoaldehyde, glyceraldehyde, and dihydroxyacetone are present as mixtures of monomers, e.g. hydroxy carbonyl compounds, epoxides and hydrates, and dimers such as half and full acetals. Further study of the barium chloride-catalysed formose reaction at pH 12 has shown that the main product forming 33% of the total sugars is the branched pentulose (1). The sugar yield reached a constant value at 70% completion of the reaction, i.e., within... [Pg.5]

Silyl cyanides react enantioselectively with such electrophiles as aldehydes, ketones, imines, activated azines, or,/ unsaturated carbonyl compounds, epoxides, and aziridines in the presence of chiral Lewis acid catalysts to give functionalized nitriles, versatile synthetic intermediates for hydroxy carboxylic acids, amino acids, and amino alcohols (Tables 3-6, 3-7, 3-8, and 3-9, Figures 3-6, 3-7, and 3-8, and Scheme 3-154). ° Soft Lewis acid catalytst, the reaction of epoxides with trimethylsilyl cyanide often leads to isonitriles, which are derived from silylisonitrile spiecies (Schemes 3-155 and 3-156). Soft Lewis base such as phosphine oxide also catalyzes the reaction and cyanohydrin silyl ethers of high ee s are isolated. [Pg.469]

Alcohols can be synthesized by the addition of carbanions to carbonyl compounds (W.C. Still, 1976) or epoxides. Both types of reactions often produce chiral centres, and stereoselectivity is an important aspect of these reactions. [Pg.44]

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Induction of Asymmetry by Amino Acids. No fewer than sis types of reactions can be carried out with yields of 75—100% usiag amino acid catalysts, ie, catalytic hydrogenation, iatramolecular aldol cyclizations, cyanhydrin synthesis, alkylation of carbonyl compounds, hydrosdylation, and epoxidations (91). [Pg.282]

Oxaziridines are generally formed by the action of a peracid on a combination of a carbonyl compound and an amine, either as a Schiff base (243) or a simple mixture. Yields are between 65 and 90%. Although oxygenation of Schiff bases is formally analogous to epoxidation of alkenes, the true mechanism is still under discussion. More favored than an epoxidation-type mechanism is formation of a condensation product (244), from which an acyloxy group is displaced with formation of an O—N bond. [Pg.228]

Dioxolanes haye been prepared from a carbonyl compound and an epoxide (e.g., ketone/SnC, CCI4, 20°, 4 h, 53% yield or aldehyde/ Et4N Br, 125-220°, 2-4 h, 20-85% yield ). Perhalo ketones can be protected by reaction with ethylene chlorohydrin under basic conditions (K2CO3, pentane, 25°, 2 h, 85% yield or NaOH, EtOH—H2O, 95% yield ). [Pg.191]

Polyfluoroalkyl- andperfluoroalkyl-substituted CO and CN multiple bonds as dipolarophiles. Dmzo alkanes are well known to react with carbonyl compounds, usually under very mild conditions, to give oxiranes and ketones The reaction has been interpreted as a nucleophilic attack of the diazo alkane on the carbonyl group to yield diazonium betaines or 1,2,3 oxadiazol 2 ines as reaction intermediates, which generally are too unstable to be isolated Aromatic diazo compounds react readily with partially fluorinated and perfluorinated ketones to give l,3,4-oxadiazol-3-ines m high yield At 25 °C and above, the aryloxa-diazolines lose nitrogen to give epoxides [111]... [Pg.860]

Such ylides are unstable and react with carbonyl compounds to give both the Wittig product (p. 545) as well as AsPh3 and an epoxide. However, this very reactivity is sometimes an advantage since As ylides often react with carbonyl compounds that are unresponsive to P ylides. Substituted quaternary arsonium compounds are also a useful source of heterocyclic organoarsanes, e.g. thermolysis of 4-(1,7-dibromoheptyl)trimethylarsonium bromide to l-arsabicyclo[3.3.0]octane ... [Pg.594]

Epoxidation of aldehydes and ketones is the most profound utility of the Corey-Chaykovsky reaction. As noted in section 1.1.1, for an a,P-unsaturated carbonyl compound, 1 adds preferentially to the olefin to provide the cyclopropane derivative. On the other hand, the more reactive 2 generally undergoes the methylene transfer to the carbonyl, giving rise to the corresponding epoxide. For instance, treatment of P-ionone (26) with 2, derived from trimethylsulfonium chloride and NaOH in the presence of a phase-transfer catalyst Et4BnNCl, gave rise to vinyl epoxide 27 exclusively. ... [Pg.4]

In the following procedure, use is made of the basic character of epoxides. In the presence of phosphonium salts, ethylene oxide removes hydrogen halide and the alkylidenetriphenylphosphorane is produced. If a suitable carbonyl compound is present in the reaction mixture, its reaction with the in situ generated phosphorane proceeds readily to give the Wittig product. [Pg.107]

In a pioneering article, Farrall et al. [61] reported the preparation of fuUy regenerable sulfonium salts anchored to an insoluble polymer and their use in the preparation of epoxides by reaction of their ylides with carbonyl compounds. Their results clearly indicate that... [Pg.378]

Alkenes are reduced by addition of H2 in the presence of a catalyst such as platinum or palladium to yield alkanes, a process called catalytic hydrogenation. Alkenes are also oxidized by reaction with a peroxyacid to give epoxides, which can be converted into lTans-l,2-diols by acid-catalyzed epoxide hydrolysis. The corresponding cis-l,2-diols can be made directly from alkenes by hydroxylation with 0s04. Alkenes can also be cleaved to produce carbonyl compounds by reaction with ozone, followed by reduction with zinc metal. [Pg.246]

The Aggarwal group has used chiral sulfide 7, derived from camphorsulfonyl chloride, in asymmetric epoxidation [4]. Firstly, they prefonned the salt 8 from either the bromide or the alcohol, and then formed the ylide in the presence of a range of carbonyl compounds. This process proved effective for the synthesis of aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl epoxides (Table 1.2, Entries 1-5). [Pg.4]


See other pages where Carbonyl compounds epoxidation is mentioned: [Pg.1111]    [Pg.153]    [Pg.75]    [Pg.125]    [Pg.137]    [Pg.682]    [Pg.682]    [Pg.706]    [Pg.922]    [Pg.46]    [Pg.18]    [Pg.1111]    [Pg.153]    [Pg.75]    [Pg.125]    [Pg.137]    [Pg.682]    [Pg.682]    [Pg.706]    [Pg.922]    [Pg.46]    [Pg.18]    [Pg.34]    [Pg.44]    [Pg.340]    [Pg.10]    [Pg.2]    [Pg.293]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]   
See also in sourсe #XX -- [ Pg.1235 , Pg.1236 ]

See also in sourсe #XX -- [ Pg.819 ]

See also in sourсe #XX -- [ Pg.819 ]

See also in sourсe #XX -- [ Pg.819 ]




SEARCH



Epoxidation compounds

Epoxidations compounds

Epoxide carbonylation

Epoxide compounds

Epoxides carbonyl compounds

Epoxides carbonylation

Epoxides compounds

© 2024 chempedia.info