Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides carbonyl compounds

E+ = alkyl halides, epoxides, carbonyl compounds, 2,/1-unsaturated carbonyl compounds... [Pg.1041]

Enals vinyl silyl ketones.1 The anion of I reacts smoothly with va rious electrophiles (alkyl halides, epoxides, carbonyl compounds). The products are converted to (E)-enals by oxidation with 30% H202. [Pg.35]

Vinyl selenides have been lithiated at the a-position by LDA983,984 at —78 °C in THF to give a-(arylselanyl)vinyllithiums 680, a-(methylselanyl)vinyllithiums 681 being obtained by selenium-lithium transmetallation from l,l-bis(methylselanyl)alkenes with n-BuLi in THF or t-BuLi in ether at —78 °C985 986. These intermediates reacted with alkyl halides, epoxides, carbonyl compounds and DMF985, the final deprotection being performed by mercury(II) salts986. [Pg.251]

Metallated 1-ethoxy-1,3-dienes 697 and 712, obtained from the corresponding acetals by means of the LICKOR base, have been treated with alkyl halides, epoxides, carbonyl compounds, carbon dioxide and carboxylic esters affording ( )-l-substituted 1-ethoxy-1,3-dienes and, after hydrolysis, a,P-unsaturated carbonyl compounds1007-1010 (Scheme 186). Intermediates 697 and 712 have been transformed into the corresponding vinyl stan-nanes, which were submitted to Stille couplings with iodobenzene and benzoyl chloride823. [Pg.255]

Instead of epoxides carbonyl compounds may be used as electrophiles to generate the y-hydroxy carboxylic acid intermediate. In the classical Stobbe reaction (equation 79) succinic esters are deprotonated and treated with aldehydes or ketones to form, via the unstable adduct (211), the paraconic ester (212). [Pg.355]

These radicals break down to alkoxyl radicals (RO ) and stabhise through the formation of epoxides, carbonyl compounds and a number of other products (Figure 5.1) ... [Pg.355]

Strong acids produce carbocations from a variety of functional molecules. Protonation of alcohols, epoxides, carbonyl compounds, and alkenes does so. Lewis acids such as anhydrous aluminum chloride can combine with these substrates and can also remove halide ions from carbon to give carbocations. Diazotization of primary amines in acid solution is another source. [Pg.214]

Alcohols can be synthesized by the addition of carbanions to carbonyl compounds (W.C. Still, 1976) or epoxides. Both types of reactions often produce chiral centres, and stereoselectivity is an important aspect of these reactions. [Pg.44]

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Induction of Asymmetry by Amino Acids. No fewer than sis types of reactions can be carried out with yields of 75—100% usiag amino acid catalysts, ie, catalytic hydrogenation, iatramolecular aldol cyclizations, cyanhydrin synthesis, alkylation of carbonyl compounds, hydrosdylation, and epoxidations (91). [Pg.282]

Oxaziridines are generally formed by the action of a peracid on a combination of a carbonyl compound and an amine, either as a Schiff base (243) or a simple mixture. Yields are between 65 and 90%. Although oxygenation of Schiff bases is formally analogous to epoxidation of alkenes, the true mechanism is still under discussion. More favored than an epoxidation-type mechanism is formation of a condensation product (244), from which an acyloxy group is displaced with formation of an O—N bond. [Pg.228]

Dioxolanes haye been prepared from a carbonyl compound and an epoxide (e.g., ketone/SnC, CCI4, 20°, 4 h, 53% yield or aldehyde/ Et4N Br, 125-220°, 2-4 h, 20-85% yield ). Perhalo ketones can be protected by reaction with ethylene chlorohydrin under basic conditions (K2CO3, pentane, 25°, 2 h, 85% yield or NaOH, EtOH—H2O, 95% yield ). [Pg.191]

Polyfluoroalkyl- andperfluoroalkyl-substituted CO and CN multiple bonds as dipolarophiles. Dmzo alkanes are well known to react with carbonyl compounds, usually under very mild conditions, to give oxiranes and ketones The reaction has been interpreted as a nucleophilic attack of the diazo alkane on the carbonyl group to yield diazonium betaines or 1,2,3 oxadiazol 2 ines as reaction intermediates, which generally are too unstable to be isolated Aromatic diazo compounds react readily with partially fluorinated and perfluorinated ketones to give l,3,4-oxadiazol-3-ines m high yield At 25 °C and above, the aryloxa-diazolines lose nitrogen to give epoxides [111]... [Pg.860]

Such ylides are unstable and react with carbonyl compounds to give both the Wittig product (p. 545) as well as AsPh3 and an epoxide. However, this very reactivity is sometimes an advantage since As ylides often react with carbonyl compounds that are unresponsive to P ylides. Substituted quaternary arsonium compounds are also a useful source of heterocyclic organoarsanes, e.g. thermolysis of 4-(1,7-dibromoheptyl)trimethylarsonium bromide to l-arsabicyclo[3.3.0]octane ... [Pg.594]

Epoxidation of aldehydes and ketones is the most profound utility of the Corey-Chaykovsky reaction. As noted in section 1.1.1, for an a,P-unsaturated carbonyl compound, 1 adds preferentially to the olefin to provide the cyclopropane derivative. On the other hand, the more reactive 2 generally undergoes the methylene transfer to the carbonyl, giving rise to the corresponding epoxide. For instance, treatment of P-ionone (26) with 2, derived from trimethylsulfonium chloride and NaOH in the presence of a phase-transfer catalyst Et4BnNCl, gave rise to vinyl epoxide 27 exclusively. ... [Pg.4]

In the following procedure, use is made of the basic character of epoxides. In the presence of phosphonium salts, ethylene oxide removes hydrogen halide and the alkylidenetriphenylphosphorane is produced. If a suitable carbonyl compound is present in the reaction mixture, its reaction with the in situ generated phosphorane proceeds readily to give the Wittig product. [Pg.107]

In a pioneering article, Farrall et al. [61] reported the preparation of fuUy regenerable sulfonium salts anchored to an insoluble polymer and their use in the preparation of epoxides by reaction of their ylides with carbonyl compounds. Their results clearly indicate that... [Pg.378]

Alkenes are reduced by addition of H2 in the presence of a catalyst such as platinum or palladium to yield alkanes, a process called catalytic hydrogenation. Alkenes are also oxidized by reaction with a peroxyacid to give epoxides, which can be converted into lTans-l,2-diols by acid-catalyzed epoxide hydrolysis. The corresponding cis-l,2-diols can be made directly from alkenes by hydroxylation with 0s04. Alkenes can also be cleaved to produce carbonyl compounds by reaction with ozone, followed by reduction with zinc metal. [Pg.246]

The Aggarwal group has used chiral sulfide 7, derived from camphorsulfonyl chloride, in asymmetric epoxidation [4]. Firstly, they prefonned the salt 8 from either the bromide or the alcohol, and then formed the ylide in the presence of a range of carbonyl compounds. This process proved effective for the synthesis of aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl epoxides (Table 1.2, Entries 1-5). [Pg.4]

Epoxides bearing electron-withdrawing groups have been most commonly synthesized by the Darzens reaction. The Darzens reaction involves the initial addition of an ct-halo enolate 40 to the carbonyl compound 41, followed by ring-closure of the alkoxide 42 (Scheme 1.17). Several approaches for inducing asymmetry into this reaction - the use of chiral auxiliaries, reagents, or catalysts - have emerged. [Pg.15]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]


See other pages where Epoxides carbonyl compounds is mentioned: [Pg.104]    [Pg.477]    [Pg.477]    [Pg.477]    [Pg.623]    [Pg.104]    [Pg.477]    [Pg.477]    [Pg.477]    [Pg.623]    [Pg.34]    [Pg.44]    [Pg.340]    [Pg.10]    [Pg.2]    [Pg.293]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.304]    [Pg.483]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Carbonyl compounds epoxidation

Conjugated carbonyl compounds, epoxidations

Epoxidation and Homologation of Carbonyl Compounds

Epoxidation compounds

Epoxidation of a,3-Unsaturated Carbonyl Compounds

Epoxidation of a,p-unsaturated carbonyl compounds

Epoxidations compounds

Epoxidations of a, p-Unsaturated Carbonyl Compounds

Epoxide carbonylation

Epoxide compounds

Epoxide compounds carbonyl ylide generation

Epoxides carbonyl compound conversions

Epoxides carbonyl compounds and sulfur ylides

Epoxides carbonylation

Epoxides compounds

Epoxides conversion into carbonyl compounds

Synthesis of epoxides from carbonyl compounds and sulfonium salts

© 2024 chempedia.info