Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perfluorinated ketones

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

A large variety of newer poly(ether imide)s has been described. Included among these are perfluorinated polymers (96), poly(ester ether imide)s (97), poly(ether imide)s derived from A/,Ar-diamino-l,4,5,8-naphthalenetetracarboxyHcbisimide (98), and poly(arylene ether imide ketone)s (99). In addition, many other heterocyHc groups have been introduced into polyether systems, eg, poly(pyrazole ether)s (100) and poly(aryl ether phenylquinoxaLine)s (101) poly(aryl ether oxazole)s with trifluoromethyl groups (102) and polyethers with other heterolinkages, eg, poly(arylether azine)s (103). [Pg.334]

Perfluorinated carbonyl compounds, especially hexafluoroacetone, are highly electron-deficient species and react vigorously with a wide variety of HX nucleophiles The reaction of these ketones and of most polyfluonnated imines toward nucleophiles can be generahzed by the scheme shown m equation 1... [Pg.840]

Hexafluoroacetone and certain perfluorinated or partially fluorinated ketones, aldehydes, and imines react with a-functionalized carboxylic acids (e.g., a-amino, a-At-methylamino [S3, 84], a-hydroxy [S5], and a-mercapto [Sd] acids) to give five-membered heterocyclic systems (equation 13). [Pg.845]

Polyfluoroalkyl- andperfluoroalkyl-substituted CO and CN multiple bonds as dipolarophiles. Dmzo alkanes are well known to react with carbonyl compounds, usually under very mild conditions, to give oxiranes and ketones The reaction has been interpreted as a nucleophilic attack of the diazo alkane on the carbonyl group to yield diazonium betaines or 1,2,3 oxadiazol 2 ines as reaction intermediates, which generally are too unstable to be isolated Aromatic diazo compounds react readily with partially fluorinated and perfluorinated ketones to give l,3,4-oxadiazol-3-ines m high yield At 25 °C and above, the aryloxa-diazolines lose nitrogen to give epoxides [111]... [Pg.860]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

Betzemeier et al. (1998) have used f-BuOOH, in the presence of a Pd(II) catalyst bearing perfluorinated ligands using a biphasic system of benzene and bromo perfluoro octane to convert a variety of olefins, such as styrene, p-substituted styrenes, vinyl naphthalene, 1-decene etc. to the corresponding ketone via a Wacker type process. Xia and Fell (1997) have used the Li salt of triphenylphosphine monosulphonic acid, which can be solubilized with methanol. A hydroformylation reaction is conducted and catalyst recovery is facilitated by removal of methanol when filtration or extraction with water can be practised. The aqueous solution can be evaporated and the solid salt can be dissolved in methanol and recycled. [Pg.143]

Another series of experiments has been performed using simple ketones substituted by fluoroalkyl groups. In this way it is clearly shown that the presence of a perfluorine group adjacent to the carbonyl to be hydrogenated is essential in order to provide both excellent activities and enantioselectivities (Table 33.9). [Pg.1188]

Figure 18 shows the temperature dependence of the proton conductivity of Nafion and one variety of a sulfonated poly(arylene ether ketone) (unpublished data from the laboratory of one of the authors). The transport properties of the two materials are typical for these classes of membrane materials, based on perfluorinated and hydrocarbon polymers. This is clear from a compilation of Do, Ch 20, and q data for a variety of membrane materials, including Dow membranes of different equivalent weights, Nafion/Si02 composites ° ° (including unpublished data from the laboratory of one of the authors), cross-linked poly ary lenes, and sulfonated poly-(phenoxyphosphazenes) (Figure 19). The data points all center around the curves for Nafion and S—PEK, indicating essentially universal transport behavior for the two classes of membrane materials (only for S—POP are the transport coefficients somewhat lower, suggesting a more reduced percolation in this particular material). This correlation is also true for the electro-osmotic drag coefficients 7 20 and Amcoh... Figure 18 shows the temperature dependence of the proton conductivity of Nafion and one variety of a sulfonated poly(arylene ether ketone) (unpublished data from the laboratory of one of the authors). The transport properties of the two materials are typical for these classes of membrane materials, based on perfluorinated and hydrocarbon polymers. This is clear from a compilation of Do, Ch 20, and q data for a variety of membrane materials, including Dow membranes of different equivalent weights, Nafion/Si02 composites ° ° (including unpublished data from the laboratory of one of the authors), cross-linked poly ary lenes, and sulfonated poly-(phenoxyphosphazenes) (Figure 19). The data points all center around the curves for Nafion and S—PEK, indicating essentially universal transport behavior for the two classes of membrane materials (only for S—POP are the transport coefficients somewhat lower, suggesting a more reduced percolation in this particular material). This correlation is also true for the electro-osmotic drag coefficients 7 20 and Amcoh...
SCHEME 139. Oxidation of olefins to ketones with palladium catalyst 215 in a perfluorinated solvent... [Pg.524]

Type II (slow homodimerization) Styrene, allylstannanes" Styrene, 2° allylic alcohols, vinyl dioxolanes, vinyl boronates Styrenes (large ortho substit.) " " 2° allylic alcohols, vinyl epoxides, unprotected 3° allylic alcohols, acrylates, acrylamides, acrylic acid, acrolein, vinyl ketones, vinyl boronates perfluorinated alkane olefins ... [Pg.196]

An investigation of keto-enol tautomerism for perfluorinated keto-enol systems was undertaken. N-methylpyrrolidone (NMP) catalyzes equilibration of the keto and enol forms, but if used in more than trace amounts, it drives the equilibrium strongly toward enol because of hydrogen bonding to the amide. The enol is much more thermodynamically stable than its ketone, and it was found that in mildly Lewis basic solvents, such as ether, THE, acetonitrile, and NMP, the enohzation equilibrium lies too far right to allow detection of ketone (Correa et al., 1994). [Pg.81]

The double bonds in certain heterocyclic compounds, such as furans, Af-acylpyrroles and A-acylindoles are also susceptible to photoaddition of carbonyl compounds to form oxetanes (equation 106) (77JHC1777). A wide range of carbonyl compounds can be used, including quinones, a-diketones, acyl cyanides, perfluorinated aldehydes and ketones and esters. A remarkable case of asymmetric induction in oxetane formation has been reported from optically active menthyl phenylglyoxylate and 2,3-dimethyl-2-butene the oxetane product obtained after hydrolysis of the ester group had an optical purity of 53% (79AG(E)868). [Pg.397]

Even relatively sensitive spiro crown ethers survive the perfluorination procedure and up to 20% yields of perfluorospiroethers 7 are obtained.18 orz/w-Carbonates 8,19 cryptans 920 and ketones 1021 are also successfully perfluorinated by Lagow s method. [Pg.168]

Vinylic Oxidation. Various alkenes are oxidized to the corresponding ketones using fm-BuOOH in the presence of Pd(II) catalysts bearing perfluorinated ligands in a fluorous biphasic system.1309 The catalyst can be reused, but progressively longer reaction times are required. [Pg.526]

Under the conditions of an epoxidation reaction, perfluorinated ketenes behave as unsaturated ketones to give epoxides. Thus, perfluorinated ketene 11 is epoxidized by sodium hypochlorite to afford a stable a-lactone.198... [Pg.48]

Deep fluorination of alkanes, ethers, acid halides, esters, alkyl chlorides, most ketones, ketals, orthoesters, and combinations of these functional groups produces principally the perfluorinated analogues (Table 2) Chlorine substituents (or chloro groups) usually survive fluorination... [Pg.104]

In radical reactions not involving bromine or chlorine on die substrate, rearrangements are much rarer One example is the fluorination of di-tert butyl ketone which produces perfluorinated tert-butyl isobutyl ketone [35] Although isolated yields are poor only the rearranged ketone could be isolated This is perhaps only the second example of a 1,2-acyl shift Low fluonne substrate ratios show that this rearrangement occurs after monofluonnation... [Pg.108]

DesMarteau et al. synthesised new perfluoroalkyl hypofluorites [44] and hypobromites [52]. The first ones were produced from perfluorinated acid fluorides or halogenated ketones as depicted in the following schemes [44] ... [Pg.177]

Raw-gum fluorocarbon elastomers are transparent to translucent with molecular weights from approximately 5000 (e.g., VITON LM with waxy consistency) to over 200,000. The most common range of molecular weights for commercial products is 100,000 to 200,000. Polymers with molecular weights over 200,000 (e.g., Kel-F products) are very tough and difficult to process. Elastomers prepared with vinylidene fluoride as comonomer are soluble in certain ketones and esters, copolymers of IFF and propylene in halogenated solvents perfluorinated elastomers are practically insoluble.16... [Pg.96]

With < 1 mol% MTO cyclobutanones are fully converted within one hour. Another approach consists of the use of a fluorous Sn-catalyst under biphasic conditions [245]. A perfluorinated tin(IV) compound, Sn[NS02C8F17]4, was recently shown to be a highly effective catalyst for BV oxidations of cyclic ketones with 35% hydrogen peroxide in a fluorous biphasic system (Fig. 4.83). The catalyst, which resides in the fluorous phase, could be easily recycled without loss of activity. [Pg.188]


See other pages where Perfluorinated ketones is mentioned: [Pg.824]    [Pg.824]    [Pg.113]    [Pg.78]    [Pg.226]    [Pg.186]    [Pg.83]    [Pg.432]    [Pg.249]    [Pg.543]    [Pg.170]    [Pg.206]    [Pg.814]    [Pg.157]    [Pg.113]    [Pg.1030]    [Pg.371]    [Pg.146]    [Pg.71]    [Pg.1291]    [Pg.224]    [Pg.221]    [Pg.474]    [Pg.90]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Perfluorinated

© 2024 chempedia.info