Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon oxide present

Various reaction mechanisms have been proposed for the formation of carbonyl sulfide and carbon disulfide and for their subsequent hydrolysis to hydrogen sulfide and carbon dioxide (Paskall and Sames, 1992). The plant data available indicate that carbonyl sulfide is formed primarily from the reaction between elemental sulfur and carbon monoxide, which in turn are derived from hydrogen suUide and carbon oxides present during combustion of the feed gas in the Claus thermal stage. The production of carlxin disulfide in the thermal stage is usually attributed to the presence of hydrocarbons in the feed gas because carbon disulfide is produced commercially by reacting elemental sulfur with saturated hydrocarbons. The... [Pg.673]

At still higher temperatures, when sufficient oxygen is present, combustion and "hot" flames are observed the principal products are carbon oxides and water. Key variables that determine the reaction characteristics are fuel-to-oxidant ratio, pressure, reactor configuration and residence time, and the nature of the surface exposed to the reaction 2one. The chemistry of hot flames, which occur in the high temperature region, has been extensively discussed (60-62) (see Col ustion science and technology). [Pg.338]

Sihcon carbide is comparatively stable. The only violent reaction occurs when SiC is heated with a mixture of potassium dichromate and lead chromate. Chemical reactions do, however, take place between sihcon carbide and a variety of compounds at relatively high temperatures. Sodium sihcate attacks SiC above 1300°C, and SiC reacts with calcium and magnesium oxides above 1000°C and with copper oxide at 800°C to form the metal sihcide. Sihcon carbide decomposes in fused alkahes such as potassium chromate or sodium chromate and in fused borax or cryohte, and reacts with carbon dioxide, hydrogen, ak, and steam. Sihcon carbide, resistant to chlorine below 700°C, reacts to form carbon and sihcon tetrachloride at high temperature. SiC dissociates in molten kon and the sihcon reacts with oxides present in the melt, a reaction of use in the metallurgy of kon and steel (qv). The dense, self-bonded type of SiC has good resistance to aluminum up to about 800°C, to bismuth and zinc at 600°C, and to tin up to 400°C a new sihcon nitride-bonded type exhibits improved resistance to cryohte. [Pg.465]

Effect of HjS, Carbon Oxides, Etc. Hydrogen sulfide in the treat gas has an inhibiting effect on the kinetics of hydrotreating. Being a product of the desulfurization reactions, HjS must diffuse from the catalyst surface into the bulk gas stream. Any HjS present beyond that formed, further slows down the rate of diffusion with a consequent decrease in the amount of desulfurization for a given amount of catalyst. Therefore, additional catalyst would be required. [Pg.66]

Due to the presence of hydrocarbons in the gas feed to the burner section, some undesirable reactions occur, such as the formation of carbon disulfide (CS2) and carbonyl sulfide (COS). A good catalyst has a high activity toward H2S conversion to sulfur and a reconversion of COS and CS2 to sulfur and carbon oxides. Mercaptans in the acid gas feed results in an increase in the air demand. For example, approximately 5-13% increase in the air required is anticipated if about 2 mol% mercaptans are present. The increase in the air requirement is essentially a function of the type of mercaptans present. The oxidation of mercaptans could be represented as ... [Pg.117]

An examination of some laboratory runs with diluted C150-1-02 catalyst can illustrate this problem. In one run with 304°C at inlet, 314 °C at exit, and 97,297 outlet dry gas space velocity, the following results were obtained after minor corrections for analytical errors. Of the CO present (out of an inlet 2.04 mole % ), 99.9885% disappeared in reaction while the C02 present (from an initial 1.96%) increased by over 30%. Equilibrium carbon oxides for both methanation reactions were essentially zero whereas the equilibrium CO based on the water-gas shift reaction at the exit composition was about one-third the actual CO exit of 0.03 mole %. From these data, activities for the various reactions may be estimated on the basis of various assumptions (see Table XIX for the effect of two different assumptions). [Pg.77]

Co-adsorption experiments show a complex role of the nature and concentration of chemisorbed ammonia species. Ammonia is not only one of the reactants for the synthesis of acrylonitrile, but also reaction with Br()>nsted sites inhibits their reactivity. In particular, IR experiments show that two pathways of reaction are possible from chemisorbed propylene (i) to acetone via isopropoxylate intermediate or (ii) to acrolein via allyl alcoholate intermediate. The first reaction occurs preferentially at lower temperatures and in the presence of hydroxyl groups. When their reactivity is blocked by the faster reaction with ammonia, the second pathway of reaction becomes preferential. The first pathway of reaction is responsible for a degradative pathway, because acetone further transform to an acetate species with carbon chain breakage. Ammonia as NH4 reacts faster with acrylate species (formed by transformation of the acrolein intermediate) to give an acrylamide intermediate. At higher temperatures the amide may be transformed to acrylonitrile, but when Brreform ammonia and free, weakly bonded, acrylic acid. The latter easily decarboxylate forming carbon oxides. [Pg.285]

H2 production from ethanol (as well as methanol) employs these methodologies either as such or after slight modifications, especially in the ATR process, wherein a separate combustion zone is usually not present (Scheme 3). A mixture of ethanol, steam and 02 with an appropriate ethanol steam 02 ratio directly enters on the catalyst bed to produce syngas at higher temperature, around 700 °C.18,22 The authors of this review believe that under the experimental conditions employed, both steam reforming and partial oxidation could occur on the same catalyst surface exchanging heats between them to produce H2 and carbon oxides. The amount of 02 may be different from what is required to achieve the thermally neutral operation. Consequently the reaction has been referred to as an oxidative steam reforming... [Pg.69]

Figure 15.8 a simple example is presented of a subsequent insertion of CO and methanolysis of the palladium acyl intermediate [14], This is not a very common reaction, because both the ligand requirements and the redox conditions for Wacker and carbonylation chemistry are not compatible. For insertion reactions one would use cis coordinating diphosphines or diimines, which makes the palladium centre more electron-rich and thus the nucleophilic attack in the Wacker part of the scheme will be slowed down. In addition, the oxidants present may lead to catalytic oxidation of carbon monoxide. [Pg.327]

Two other hydrogen production methods, pyrolysis and aqueous reforming, have been explored for use in microreactors. Pyrolysis is the decomposition of hydrocarbons into hydrogen and carbon in water-free and air-free environments. ° If no water or air is present, no carbon oxides (e.g., CO or CO2) are... [Pg.534]

Iron has a rich surface coordination chemistry that forms the basis of its important catalytic properties. There are many catalytic applications in which metallic iron or its oxides play a vital part, and the best known are associated with the synthesis of ammonia from hydrogen and nitrogen at high pressure (Haber-Bosch Process), and in hydrocarbon synthesis from CO/C02/hydrogen mixtures (Fischer-Tropsch synthesis). The surface species present in the former includes hydrides and nitrides as well as NH, NH2, and coordinated NH3 itself. Many intermediates have been proposed for hydrogenation of carbon oxides during Fischer-Tropsch synthesis that include growing hydrocarbon chains. [Pg.406]

Soluble complexes are formed with metallic oxides, especially in the presence of alkali hydroxides. The strong tendency of hexitols to dissolve metallic oxides presents considerable technical difficulty in their manufacture and for this reason glass, rubber or stainless-steel equipment is used. In some instances well defined complexes can be isolated, particularly with alkaline earth oxides or mixtures with ferric oxide. These complexes absorb carbon dioxide and water and are unstable in dilute aqueous solution. Their structures are not established, but are inferred from analytical and physical measurements. Diehl has reviewed the subject. [Pg.224]

The purpose of the present paper is to offer a contribute to the understanding of the mechanisms of these reactions by using an IR spectroscopic method and well-characterized "monolayer" type vanadia-titania (anatase) as the catalyst. We will focus our paper in particular on the following subjects i) the nature of the activation step of the methyl-aromatic hydrocarbon ii) the mechanism of formation of maleic anhydride as a by-product of o-xylene synthesis iii) the main routes of formation of carbon oxides upon methyl-aromatic oxidation and ammoxidation iv) the nature of the first N-containing intermediates in the ammoxidation routes. [Pg.169]


See other pages where Carbon oxide present is mentioned: [Pg.199]    [Pg.414]    [Pg.199]    [Pg.414]    [Pg.222]    [Pg.1039]    [Pg.1290]    [Pg.505]    [Pg.418]    [Pg.5]    [Pg.157]    [Pg.148]    [Pg.305]    [Pg.236]    [Pg.240]    [Pg.7]    [Pg.151]    [Pg.283]    [Pg.61]    [Pg.1039]    [Pg.143]    [Pg.5]    [Pg.212]    [Pg.81]    [Pg.320]    [Pg.323]    [Pg.578]    [Pg.787]    [Pg.929]    [Pg.369]    [Pg.532]    [Pg.122]    [Pg.553]    [Pg.5]    [Pg.241]    [Pg.526]    [Pg.195]    [Pg.63]    [Pg.332]    [Pg.365]   
See also in sourсe #XX -- [ Pg.803 ]




SEARCH



© 2024 chempedia.info