Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon nanotube types

The use of organic nanofillers allows the reduction of the filler content required to achieve high thermal conductivity. In particular, multi-walled carbon nanotubes (MWCNTs), with their one-dimensional structure, high aspect ratio and superior thermal conductivity (3000 W/mK for an individual MWCNT and 200 W/mK for bulk MWCNTs at room temperature (Yang et al., 1991)) have recently attracted great attention in the scientific world. The influence of different carbon nanotube types, particle content, interfacial area, surface functionalization and aspect ratio on the electrical and thermal conductivity of epoxy resins has been investigated (Gojny et al., 2006). [Pg.103]

Within the huge amount of papers deahng with carbon nanotubes (CNTs or, simply NTs) that appeared in the literature since the seminal work by lijima [151] and exponentially increased in the following decades [152,153], porphyrin-decorated NT represent an important part, both with the single-walled (SWCNTs) and multiwalled (MWCNTs) carbon nanotube type. [Pg.483]

In general, the number of phonon branches for a carbon nanotube is very large, since every nanotube has 6N vibrational degrees of freedom. The symmetry types of the phonon branches for a general chiral nanotube are obtained using a standard group theoretical analysis [194]... [Pg.78]

Figure 11.7. Two types of single-walled carbon nanotubes. Figure 11.7. Two types of single-walled carbon nanotubes.
Modifications of the conduction properties of semiconducting carbon nanotubes by B (p-type) and N ( -type) substitutional doping has also been dis-cussed[3l] and, in addition, electronic modifications by filling the capillaries of the tubes have also been proposed[32]. Exohedral doping of the space between nanotubes in a tubule bundle could provide yet an-... [Pg.34]

Carbon nanotubes were first thought of as perfeet seamless eylindrieal graphene sheets —a defeet-free strueture. However, with time and as more studies have been undertaken, it is elear that nanotubes are not neeessarily that perfeet this issue is not simple bc-eause of a variety of seemingly eontradictory observations. The issue is further eomplicated by the faet that the quality of a nanotube sample depends very mueh on the type of maehine used to prepare it[l]. Although nanotubes have been available in large quantities sinee 1992[2], it is only recently that a purification method was found[3]. So, it is now possible to undertake various accurate property measurements of nanotubes. However, for those measurements to be meaningful, the presence and role of defeets must be elearly understood. [Pg.71]

The yield strengths of defect-free SWNTs may be higher than that measured for Bacon s scroll structures, and measurements on defect-free carbon nanotubes may allow the prediction of the yield strength of a single, defect-free graphene sheet. Also, the yield strengths of MWNTs are subject to the same limitations discussed above with respect to tube slippage. All the discussion here relates to ideal nanotubes real carbon nanotubes may contain faults of various types that will influence their properties and require experimental measurements of their mechanical constants. [Pg.144]

Among the several known types of carbon fibres the discussion in this chapter is limited to the electric arc grown multi-walled carbon nanotubes (MWCNTs) as well as single-walled ones (SWCNTs). For MWCNT we restrict the discussion to the idealised coaxial cylinder model. For other models and other shapes we refer to the literature [1-6],... [Pg.14]

TT-Electron materials, which are defined as those having extended Jt-electron clouds in the solid state, have various peculiar properties such as high electron mobility and chemical/biological activities. We have developed a set of techniques for synthesizing carbonaceous K-electron materials, especially crystalline graphite and carbon nanotubes, at temperatures below 1000°C. We have also revealed new types of physical or chemical interactions between Jt-electron materials and various other materials. The unique interactions found in various Jt-electron materials, especially carbon nanotubes, will lay the foundation for developing novel functional, electronic devices in the next generation. [Pg.153]

Although random and irregular type GaN nanorods have been prepared by using transition metal nanoparticles, such as Ni, Co, and Fe as catalysts and carbon nanotubes as the template, the preparation of controllable regular array of strai t GaN nanorods has not yet been reported. Fabrication of well-ordered nano-structures with high density is very important for the application of nano-structures to practical devices. [Pg.737]

Only a few in vivo dermal toxicity studies have been reported so far. Huczko and Lange [50] evaluated the potential of raw CNTs to induce skin irritation by conducting two routine dermatological tests (patch test on 40 volunteers with allergy susceptibilities and Draize rabbit eye test on four albino rabbits). Koyama etal. [51] showed the biological responses to four different types of carbon nanotubes (SWNTs, two types of MWNTs with different diameters, and cup-stacked carbon nanotubes) after their subcutaneous implantation in mice. Both tests [50, 51] showed no or poor irritation effects. However, the in vitro studies in epidermal cell lines exposed to CNTs, and also a more recent report on the toxic outcomes of topical exposure of mice to SWNTs [46], have raised concerns over these assessments. Clearly, this is an area requiring further scientific evaluation. [Pg.182]

Lacerda, L. et al. (2008) Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine, 3 (2), 149—161. [Pg.214]

Kostarelos, K. et al. (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2 (2), 108-113. [Pg.215]

Another interesting type of novel carbons applicable for supercapacitors, consists of a carbon/carbon composite using nanotubes as a perfect backbone for carbonized polyacrylonitrile. Multiwalled carbon nanotubes (MWNTs), due to their entanglement form an interconnected network of open mesopores, which makes them optimal for assuring good mechanical properties of the electrodes while allowing an easy diffusion of ions. [Pg.31]

A classic case is an EC of a faradic type in which an electrode is comprised of Ni(OH)2, MnOOH, etc. active materials. Since in these chemistries the conductivity depends on electrode state-of-charge charge level, they require presence of additional stable conductive skeletons in their structure. Noteworthy mentioning that besides traditional forms of carbon or other conductors that may form such a skeleton, the latest progressive investigations demonstrate the possibility of application of different nanostructured forms of carbon, such as single-wall and multi-wall carbon nanotubes [4, 5], Yet, for the industrial application, highly conductive carbon powders, fibers and metal powders dominate at present. [Pg.45]

Since their first discovery by Iijima in 1991 [1], carbon nanotubes have attracted a great deal of interest due to their very exciting properties. Their structure is characterized by cylindrically shaped enclosed graphene layers that can form co-axially stacked multi-wall nanotubes (MWNTs) or single-walled nanotubes (SWNTs). Like in graphite, carbon atoms are strongly bonded to each other in the curved honeycomb network but have much weaker Van der Waals-type interaction with carbons belonging to... [Pg.292]

H. Dodziuk, A. Ejchart, W. Anczewski, H. Ueda, E. Krinichnaya, G. Dolgonos, and W. Kutner, Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with r/-cyclodextrin, Chem. Commun. (2003) 986-987. [Pg.377]

The following sections discuss many of the major particle types and provide bioconjugation options for the coupling of ligands to the surface of functionalized particles. Some additional nanoparticle constructs, including gold particles, dendrimers, carbon nanotubes, Buckyballs and fullerenes, and quantum dots are discussed more fully elsewhere (see Chapter 7 Chapter 9, Section 10 Chapter 15 and Chapter 24). [Pg.588]

One interesting development in the carbon nanotube-based electrochemical sensor is the ability to self-assemble the CNT to other types of nano materials such as gold and silver nanoparticles or to a polymer surface. The enhancement of Raman signals of carbon nanotubes through the adsorption on gold or silver substrate has been also reported [142-146],... [Pg.510]

As the analytical, synthetic, and physical characterization techniques of the chemical sciences have advanced, the scale of material control moves to smaller sizes. Nanoscience is the examination of objects—particles, liquid droplets, crystals, fibers—with sizes that are larger than molecules but smaller than structures commonly prepared by photolithographic microfabrication. The definition of nanomaterials is neither sharp nor easy, nor need it be. Single molecules can be considered components of nanosystems (and are considered as such in fields such as molecular electronics and molecular motors). So can objects that have dimensions of >100 nm, even though such objects can be fabricated—albeit with substantial technical difficulty—by photolithography. We will define (somewhat arbitrarily) nanoscience as the study of the preparation, characterization, and use of substances having dimensions in the range of 1 to 100 nm. Many types of chemical systems, such as self-assembled monolayers (with only one dimension small) or carbon nanotubes (buckytubes) (with two dimensions small), are considered nanosystems. [Pg.136]


See other pages where Carbon nanotube types is mentioned: [Pg.242]    [Pg.141]    [Pg.242]    [Pg.141]    [Pg.1]    [Pg.33]    [Pg.80]    [Pg.147]    [Pg.148]    [Pg.2]    [Pg.29]    [Pg.129]    [Pg.153]    [Pg.164]    [Pg.58]    [Pg.180]    [Pg.362]    [Pg.725]    [Pg.728]    [Pg.28]    [Pg.32]    [Pg.582]    [Pg.638]    [Pg.502]    [Pg.505]    [Pg.570]    [Pg.78]    [Pg.415]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Carbon types

Nanotubes types

© 2024 chempedia.info