Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon semiconducting

The carbon black in semiconductive shields is composed of complex aggregates (clusters) that are grape-like stmctures of very small primary particles in the 10 to 70 nanometer size range (see Carbon, carbon black). The optimum concentration of carbon black is a compromise between conductivity and processibiUty and can vary from about 30 to 60 parts per hundred of polymer (phr) depending on the black. If the black concentration is higher than 60 phr for most blacks, the compound is no longer easily extmded into a thin continuous layer on the cable and its physical properties are sacrificed. Ionic contaminants in carbon black may produce tree channels in the insulation close to the conductor shield. [Pg.329]

The most important parameter that affects the resistivity is the amount of carbon black particles, and of secondary importance is the type and especially the shape of the carbon black particles. The susceptibiUty of the carbon black to oxidation may possibly lead to high resistivity of insulation shields. The type of polymer used in a semiconducting material is also an important parameter that can affect resistivity. [Pg.329]

Processing conditions also significantly affect the lengths and numbers of continuous carbon black chains, therefore the semiconducting shields must be appHed with a minimum of residual mechanical stress. [Pg.329]

The specific electrical conductivity of dry coals is very low, specific resistance 10 ° - ohm-cm, although it increases with rank. Coal has semiconducting properties. The conductivity tends to increase exponentially with increasing temperatures (4,6). As coals are heated to above ca 600°C the conductivity rises especially rapidly owing to rearrangements in the carbon stmcture, although thermal decomposition contributes somewhat below this temperature. Moisture increases conductivity of coal samples through the water film. [Pg.221]

The ID electronic energy bands for carbon nanotubes [170, 171, 172, 173, 174] are related to bands calculated for the 2D graphene honeycomb sheet used to form the nanotube. These calculations show that about 1/3 of the nanotubes are metallic and 2/3 are semiconducting, depending on the nanotube diameter di and chiral angle 6. It can be shown that metallic conduction in a (n, m) carbon nanotube is achieved when... [Pg.70]

Closely related to the ID dispersion relations for the carbon nanotubes is the ID density of states shown in Fig. 20 for (a) a semiconducting (10,0) zigzag carbon nanotube, and (b) a metallic (9,0) zigzag carbon nanotube. The results show that the metallic nanotubes have a small, but non-vanishing 1D density of states, whereas for a 2D graphene sheet (dashed curve) the density of states... [Pg.71]

Fig. 3. The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The pairs of integers ( , ) in the figure specify chiral vectors Cy, (see Table I) for carbon nanotubes, including zigzag, armchair, and chiral tubules. Below each pair of integers (n,m) is listed the number of distinct caps that can be joined continuously to the cylindrical carbon tubule denoted by (n,wi)[6]. The circled dots denote metallic tubules and the small dots are for semiconducting tubules. Fig. 3. The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The pairs of integers ( , ) in the figure specify chiral vectors Cy, (see Table I) for carbon nanotubes, including zigzag, armchair, and chiral tubules. Below each pair of integers (n,m) is listed the number of distinct caps that can be joined continuously to the cylindrical carbon tubule denoted by (n,wi)[6]. The circled dots denote metallic tubules and the small dots are for semiconducting tubules.
Although still preliminary, the study that provides the most detailed test of the theory for the electronic properties of the ID carbon nanotubes, thus far, is the combined STM/STS study by Oik and Heremans[13]. In this STM/STS study, more than nine individual multilayer tubules with diameters ranging from 1.7 to 9.5 nm were examined. The 7-Fplots provide evidence for both metallic and semiconducting tubules[13,14]. Plots of dl/dV indicate maxima in the ID density of states, suggestive of predicted singularities in the ID density of states for carbon nanotubes. This STM/ STS study further shows that the energy gap for the semiconducting tubules is proportional to the inverse tubule diameter l/<7, and is independent of the tubule chirality. [Pg.32]

Modifications of the conduction properties of semiconducting carbon nanotubes by B (p-type) and N ( -type) substitutional doping has also been dis-cussed[3l] and, in addition, electronic modifications by filling the capillaries of the tubes have also been proposed[32]. Exohedral doping of the space between nanotubes in a tubule bundle could provide yet an-... [Pg.34]

The existence of carbon nanotubes with diameters small compared to the de Broglie wavelength has been described by Iijima[l,2,3] and others[4,5]. The energy band structures for carbon nanotubes have been calculated by a number of authors and the results are summarized in this issue by M.S. Dresselhaus, G. Dres-selhaus, and R. Saito. In short, the tubules can be either metallic or semiconducting, depending on the tubule diameter and chirality[6,7,8]. The calculated density of states[8] shows singularities... [Pg.121]

The electronic properties of single-walled carbon nanotubes have been studied theoretically using different methods[4-12. It is found that if n — wr is a multiple of 3, the nanotube will be metallic otherwise, it wiU exhibit a semiconducting behavior. Calculations on a 2D array of identical armchair nanotubes with parallel tube axes within the local density approximation framework indicate that a crystal with a hexagonal packing of the tubes is most stable, and that intertubule interactions render the system semiconducting with a zero energy gap[35]. [Pg.133]

Studies on the electronic structure of carbon nanotube (CNT) is of much importance toward its efficient utilisation in electronic devices. It is well known that the early prediction of its peculiar electronic structure [1-3] right after the lijima s observation of multi-walled CNT (MWCNT) [4] seems to have actually triggered the subsequent and explosive series of experimental researches of CNT. In that prediction, alternative appearance of metallic and semiconductive nature in CNT depending on the combination of diameter and pitch or, more specifically, chiral vector of CNT expressed by two kinds of non-negative integers (a, b) as described later (see Fig. 1). [Pg.40]

Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed. Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed.

See other pages where Carbon semiconducting is mentioned: [Pg.2412]    [Pg.252]    [Pg.81]    [Pg.324]    [Pg.329]    [Pg.329]    [Pg.392]    [Pg.552]    [Pg.563]    [Pg.7]    [Pg.143]    [Pg.181]    [Pg.19]    [Pg.40]    [Pg.70]    [Pg.70]    [Pg.72]    [Pg.73]    [Pg.75]    [Pg.34]    [Pg.35]    [Pg.35]    [Pg.121]    [Pg.127]    [Pg.192]    [Pg.51]    [Pg.164]    [Pg.211]    [Pg.360]    [Pg.722]    [Pg.728]    [Pg.728]    [Pg.853]    [Pg.63]    [Pg.67]    [Pg.187]    [Pg.472]   
See also in sourсe #XX -- [ Pg.273 ]




SEARCH



Semiconduction

Semiconductivity

© 2024 chempedia.info