Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon conducting polymers

Although platinum is the metal of choice for PEM fuel cell cathodes, Paul Matter, Elizabeth Biddinger, and Umit Ozkan (Ohio State University) show that nonprecious metals will have to be developed for this type of fuel cell to become practical and widely used. Although few materials have the electrochemical properties needed to replace platinum, this review discusses candidates such as macrocycle compounds, non-marcrocyclic pyrolyzed carbons, conducting polymers, chalcogen-ides, and heteropolyacids. [Pg.10]

The enhancement of specific capacitance for carbon materials is generally realized by the usage of pseudocapacitance effects, which depend on the surface functionality of carbon and on the presence of electro-active species (termed supercapacitors) [162-164]. Several modifications (i.e., oxidation of carbon for increasing the surface functionality, formation of carbon/conducting polymers composites or insertion of electroactive particles of transition metals) can be carried out to increase the pseudocapacitance that arises fi om faradaic reactions. However, the enhancement of the capacitance connected with faradaic reactions of surface groups often contributes to an increase in the self-discharge of the capacitor due to the instability of the functionalities [165]. [Pg.171]

The electrical properties and energy densities of energy storage devices are determined by the selection of electrode material. Various materials can be used as electrodes carbon, conducting polymers, metals, and metal oxides. [Pg.458]

Bicomponent technology has been used to introduce functional and novelty effects other than stretch to nylon fibers. For instance, antistatic yams are made by spinning a conductive carbon-black polymer dispersion as a core with a sheath of nylon (188) and as a side-by-side configuration (189). At 0.1—1.0% implants, these conductive filaments give durable static resistance to nylon carpets without interfering with dye coloration. Conductive materials such as carbon black or metals as a sheath around a core of nylon interfere with color, especially light shades. [Pg.258]

Polypyrroles. Highly stable, flexible films of polypyrrole ate obtained by electrolytic oxidation of the appropriate pyrrole monomers (46). The films are not affected by air and can be heated to 250°C with Htde effect. It is beheved that the pyrrole units remain intact and that linking is by the a-carbons. Copolymerization of pyrrole with /V-methy1pyrro1e yields compositions of varying electrical conductivity, depending on the monomer ratio. Conductivities as high as 10 /(n-m) have been reported (47) (see Electrically conductive polymers). [Pg.359]

There are different concrete replacement systems available for renovating reinforced concrete structures. They range from sprayed concrete without polymer additions to systems containing conducting polymers (PCC-mortar). Since with the latter alkalinity is lower, more rapid carbonization occurs on weathering [59] and the increased electrical resistivity has to be taken into account, so that with cathodic protection only sprayed concrete should be used as a repair mortar. [Pg.435]

Carbonaceous materials graphite, carbon, graphite chips, coke breeze, conductive polymer, conductive paint. [Pg.163]

A continuous polymer anode system has been developed specifically for the cathodic protection of buried pipelines and tanks. The anode, marketed under the trade name Anodeflex , consists of a continuous stranded copper conductor (6AWG) which is encased in a thick jacket of carbon-loaded polymer, overall diameter 12-5 mm. To prevent unintentional short circuits an insulating braid is sometimes applied to the outer surface of the conductive polymer. [Pg.186]

A conductive polymer electrode has been designed specifically for the cathodic protection of steel reinforcing bars in concrete and is marketed under the trade name Ferex . The anode consists of a 16 AWG stranded copper conductor surrounded by a carbon-loaded polymeric coating similar to that used on the Anodeflex system ) to provide a nominal anode diameter of 8 mm The manufacturer claims that at the maximum recommended current density of 0 08 Am the anode life in concrete will be 32 years with a proportionately longer life at lower current densities. [Pg.189]

These consist of a number of parallel slots cut into the concrete surface. Each slot is then filled with a secondary anode of carbon/graphite fibres embedded in a conductive polymer grout. The current to each of these secondary anode systems is provided by a primary anode of platinised niobium wire placed in slots filled with conductive polymer which acts as the primary anode, these slots intersecting each slot of graphite fibre/conductive polymer at right angles. [Pg.190]

Natural graphite and synthetic graphite were used as fillers for the manufacture of conducting composite materials by the polymerization filling technique [24, 53-56], The manufacture of conducting polymer composite materials by this technique on the basis of some kinds of carbon black is also known [51, 52],... [Pg.140]

All conducting polymers have a common feature a long chain of sp2 hybridized carbon atoms, often with nitrogen or sulfur atoms included in the chains. Polyacetylene, the first conducting polymer, is also the simplest, consisting of thousands of —CH=CH -units ... [Pg.890]

A considerable decrease in platinum consumption without performance loss was attained when a certain amount (30 to 40% by mass) of the proton-conducting polymer was introduced into the catalytically active layer of the electrode. To this end a mixture of platinized carbon black and a solution of (low-equivalent-weight ionomeric ) Nafion is homogenized by ultrasonic treatment, applied to the diffusion layer, and freed of its solvent by exposure to a temperature of about 100°C. The part of the catalyst s surface area that is in contact with the electrolyte (which in the case of solid electrolytes is always quite small) increases considerably, due to the ionomer present in the active layer. [Pg.365]

Polyvinyl chloride has been modified by photochemical reactions in order to either produce a conductive polymer or to improve its light-stability. In the first case, the PVC plate was extensively photochlorinated and then degraded by UV exposure in N2. Total dehydrochlorination was achieved by a short Ar+ laser irradiation at 488 nm that leads to a purely carbon polymer which was shown to exhibit an electrical conductivity. In the second case, an epoxy-acrylate resin was coated onto a transparent PVC sheet and crosslinked by UV irradiation in the presence of both a photoinitiator and a UV absorber. This superficial treatment was found to greatly improve the photostability of PVC as well as its surface properties. [Pg.201]


See other pages where Carbon conducting polymers is mentioned: [Pg.371]    [Pg.348]    [Pg.348]    [Pg.201]    [Pg.12]    [Pg.23]    [Pg.588]    [Pg.593]    [Pg.114]    [Pg.1784]    [Pg.105]    [Pg.283]    [Pg.101]    [Pg.371]    [Pg.348]    [Pg.348]    [Pg.201]    [Pg.12]    [Pg.23]    [Pg.588]    [Pg.593]    [Pg.114]    [Pg.1784]    [Pg.105]    [Pg.283]    [Pg.101]    [Pg.296]    [Pg.31]    [Pg.44]    [Pg.45]    [Pg.435]    [Pg.889]    [Pg.451]    [Pg.164]    [Pg.138]    [Pg.46]    [Pg.127]    [Pg.129]    [Pg.369]    [Pg.550]    [Pg.552]    [Pg.356]    [Pg.331]    [Pg.97]    [Pg.468]    [Pg.259]    [Pg.202]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Carbon polymer

Conductive carbon

© 2024 chempedia.info