Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon aromatic compounds

Aromatic carbon Aromatic compounds Aromatic esters Aromatic ethers... [Pg.71]

To illustrate this, one quart of xylene, an eight-carbon aromatic compound, weighs approximately 823 g (1.81 lb.) while 1 quart of n-octane, an eight-carbon paraffin, weighs approximately 665 g (1.47 lbs.). [Pg.122]

Figure 5.12 shows QSAR analysis for six-carbon aromatic compounds (see also Table 5.7). [Pg.160]

The benzo-fiised counterparts of the simple heterocycles pyrrole, fiiran, and thiophene are indole, benzofuran, and benzothiophene. These compoimds are related to the two-ring, all-carbon aromatic compound naphthalene ... [Pg.605]

The combination of a secondary benzyl alcohol with Hf(OTf)4 in nitromethane was a highly effective secondary benzylation system. Secondary benzylation of carbon (aromatic compounds, olefins, an enol acetate), nitrogen (amide derivatives), and oxygen (alcohols) nucleophiles was carried out with a secondary benzyl alcohol and 1 mol % of Hf(OTf)4 in the presence of water. Secondary benzyl alcohols and nucleophiles bearing acid-sensitive functional groups (e.g.,icri-butyldimethylsilyloxy and acetoxy groups and methyl/benzyl esters) could be used for alkylation. Hf(OTf)4 was the most active catalyst for this alkylation, and trifluoromethanesulfonic acid (triflic acid, HOTf) also proved to be a good catalyst. In such cases, the catal)fiic activity of metal triflates and HOTf increased in the order La(OTf)3 [Pg.346]

The composition of coal tar varies with the carbonization method but consists, largely, of mononuclear and polynuclear aromatic compounds and their derivatives. Coke oven tars are relatively low in aliphatic and phenolic content while low-temperature tars have much higher contents of both. [Pg.103]

When an aromatic compound having an aliphatic side chain is subjected to oxidation, fission of the side chain occurs between the first and second carbon atoms from the benzene ring, the first carbon atom thus becoming part of a carboxyl ( -COOH) group. For example ... [Pg.239]

A similar circumstance is detectable for nitrations in organic solvents, and has been established for sulpholan, nitromethane, 7-5 % aqueous sulpholan, and 15 % aqueous nitromethane. Nitrations in the two organic solvents are, in some instances, zeroth order in the concentration of the aromatic compound (table 3.2). In these circumstances comparisons with benzene can only be made by the competitive method. In the aqueous organic solvents the reactions are first order in the concentration of the aromatic ( 3.2.3) and comparisons could be made either competitively or by directly measuring the second-order rate constants. Data are given in table 3.6, and compared there with data for nitration in perchloric and sulphuric acids (see table 2.6). Nitration at the encounter rate has been demonstrated in carbon tetrachloride, but less fully explored. ... [Pg.46]

In TT-complexes formed from aromatic compounds and halogens, the halogen is not bound to any single carbon atom but to the 7r-electron structure of the aromatic, though the precise geometry of the complexes is uncertain. The complexes with silver ions also do not have the silver associated with a particular carbon atom of the aromatic ring, as is shown by the structure of the complex from benzene and silver perchlorate. ... [Pg.117]

Cyclic compounds that contain at least one atom other than carbon within their ring are called heterocyclic compounds, and those that possess aromatic stability are called het erocyclic aromatic compounds Some representative heterocyclic aromatic compounds are pyridine pyrrole furan and thiophene The structures and the lUPAC numbering system used m naming their derivatives are shown In their stability and chemical behav lor all these compounds resemble benzene more than they resemble alkenes... [Pg.460]

A large group of heterocyclic aromatic compounds are related to pyrrole by replacement of one of the ring carbons p to nitrogen by a second heteroatom Com pounds of this type are called azoles... [Pg.461]

Section 11 22 Heterocyclic aromatic compounds are compounds that contain at least one atom other than carbon within an aromatic ring... [Pg.467]

HETCOR (Section 13 19) A 2D NMR technique that correlates the H chemical shift of a proton to the chemical shift of the carbon to which it is attached HETCOR stands for heteronuclear chemical shift correlation Heteroatom (Section 1 7) An atom in an organic molecule that IS neither carbon nor hydrogen Heterocyclic compound (Section 3 15) Cyclic compound in which one or more of the atoms in the nng are elements other than carbon Heterocyclic compounds may or may not be aromatic... [Pg.1285]

In presence of one carbon-nitrogen triple bond —C—C=N In compounds with tendency to dipole formation, e.g., C=C—C=0 In aromatic compounds... [Pg.311]

A 1 1 complex melting at 24.8°C is formed between PX and carbon tetrachloride (52). The other Cg aromatic compounds do not form these complexes. Carbon tetrabromide and chloral (CCl CHO) form addition compounds with PX. [Pg.414]

A further consequence of association of acylating agents with basic compounds is an increase in the bulk of the reagent, and greater resistance to attack at the more stericaHy hindered positions of aromatic compounds. Thus acylation of chrysene and phenanthrene in nitrobenzene or in carbon disulfide occurs to a considerable extent in an outer ring, whereas acylation of naphthalene leads to extensive reaction at the less reactive but stericaky less hindered 2-position. [Pg.557]

The aromatic core or framework of many aromatic compounds is relatively resistant to alkylperoxy radicals and inert under the usual autoxidation conditions (2). Consequentiy, even somewhat exotic aromatic acids are resistant to further oxidation this makes it possible to consider alkylaromatic LPO as a selective means of producing fine chemicals (206). Such products may include multifimctional aromatic acids, acids with fused rings, acids with rings linked by carbon—carbon bonds, or through ether, carbonyl, or other linkages (279—287). The products may even be phenoUc if the phenoUc hydroxyl is first esterified (288,289). [Pg.344]

The accepted configuration of naphthalene, ie, two fused benzene rings sharing two common carbon atoms in the ortho position, was estabUshed in 1869 and was based on its oxidation product, phthaUc acid (1). Based on its fused-ring configuration, naphthalene is the first member in a class of aromatic compounds with condensed nuclei. Naphthalene is a resonance hybrid ... [Pg.480]

Olefin Complexes. Silver ion forms complexes with olefins and many aromatic compounds. As a general rule, the stabihty of olefin complexes decreases as alkyl groups are substituted for the hydrogen bonded to the ethylene carbon atoms (19). [Pg.90]

Sulfonic acids are prone to reduction with iodine [7553-56-2] in the presence of triphenylphosphine [603-35-0] to produce the corresponding iodides. This type of reduction is also facile with alkyl sulfonates (16). Aromatic sulfonic acids may also be reduced electrochemicaHy to give the parent arene. However, sulfonic acids, when reduced with iodine and phosphoms [7723-14-0] produce thiols (qv). Amination of sulfonates has also been reported, in which the carbon—sulfur bond is cleaved (17). Ortho-Hthiation of sulfonic acid lithium salts has proven to be a useful technique for organic syntheses, but has Httie commercial importance. Optically active sulfonates have been used in asymmetric syntheses to selectively O-alkylate alcohols and phenols, typically on a laboratory scale. Aromatic sulfonates are cleaved, ie, desulfonated, by uv radiation to give the parent aromatic compound and a coupling product of the aromatic compound, as shown, where Ar represents an aryl group (18). [Pg.96]

S. Coffey, ed., Kodd s Chemistry of Carbon Compounds, 2nd ed., Vol. Ill, Tart A., Aromatic Compounds, Elsevier Publishing Company, New York, 1971, p. 23. [Pg.49]

Process Stream Separations. Differences in adsorptivity between gases provides a means for separating components in industrial process gas streams. Activated carbon in fixed beds has been used to separate aromatic compounds from lighter vapors in petroleum refining process streams (105) and to recover gasoline components from natural and manufactured gas (106,107). [Pg.535]

A chlorohydrin has been defined (1) as a compound containing both chloio and hydroxyl radicals, and chlorohydrins have been described as compounds having the chloro and the hydroxyl groups on adjacent carbon atoms (2). Common usage of the term appHes to aUphatic compounds and does not include aromatic compounds. Chlorohydrins are most easily prepared by the reaction of an alkene with chlorine and water, though other methods of preparation ate possible. The principal use of chlorohydrins has been as intermediates in the production of various oxitane compounds through dehydrochlorination. [Pg.70]

It resembles tetracyanoethylene in that it adds reagents such as hydrogen (31), sulfurous acid (31), and tetrahydrofuran (32) to the ends of the conjugated system of carbon atoms suffers displacement of one or two cyano groups by nucleophilic reagents such as amines (33) or sodiomalononittile (34) forms TT-complexes with aromatic compounds (35) and takes an electron from iodide ion, copper, or tertiary amines to form an anion radical (35,36). The anion radical has been isolated as salts of the formula (TCNQ) where is a metal or ammonium cation, and n = 1, 1.5, or 2. Some of these salts have... [Pg.404]

These are subdivided into (a) compounds isomeric with aromatic compounds in which the ring contains two double bonds but also an hybridized carbon (7 systems Scheme 6) or a quaternary nitrogen atom (9 systems Scheme 7). [Pg.4]

Scheme 6 Isomers of aromatic compounds with an ip -hybridized carbon atom... Scheme 6 Isomers of aromatic compounds with an ip -hybridized carbon atom...

See other pages where Carbon aromatic compounds is mentioned: [Pg.95]    [Pg.95]    [Pg.42]    [Pg.77]    [Pg.946]    [Pg.554]    [Pg.277]    [Pg.446]    [Pg.446]    [Pg.69]    [Pg.166]    [Pg.171]    [Pg.525]    [Pg.79]    [Pg.463]    [Pg.134]    [Pg.426]    [Pg.150]    [Pg.310]    [Pg.220]    [Pg.26]    [Pg.133]    [Pg.156]    [Pg.2063]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Aromatic carbon

Aromatic carbonates

Carbon aromaticity

© 2024 chempedia.info