Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic compounds hydrogenation

A white solid, m.p. 178 C. Primarily of interest as a brominaling agent which will replace activated hydrogen atoms in benzylic or allylic positions, and also those on a carbon atom a to a carbonyl group. Activating influences can produce nuclear substitution in a benzene ring and certain heterocyclic compounds also used in the oxidation of secondary alcohols to ketones. [Pg.69]

HETCOR (Section 13 19) A 2D NMR technique that correlates the H chemical shift of a proton to the chemical shift of the carbon to which it is attached HETCOR stands for heteronuclear chemical shift correlation Heteroatom (Section 1 7) An atom in an organic molecule that IS neither carbon nor hydrogen Heterocyclic compound (Section 3 15) Cyclic compound in which one or more of the atoms in the nng are elements other than carbon Heterocyclic compounds may or may not be aromatic... [Pg.1285]

Radicals derived from heterocyclic compounds by removal of hydrogen from a ring are named by adding -yl to the names of the parent compounds (with elision of the final e, if present). These exceptions are retained ... [Pg.12]

In general, the solubility of heterocyclic compounds in water (Table 33) is enhanced by the possibility of hydrogen bonding. Pyridine-like nitrogen atoms facilitate this (compare benzene and pyridine). In the same way, oxazole is miscible with water, and isoxazole is very soluble, more so than furan. [Pg.31]

Solvent effects also depend on the ground-state structure of the substrate and on the transition-state structure, as is shown below. Here let us merely note that A-heterocyclic compounds tend to form a hydrogen bond with hydroxylic solvents even in the ground state. Hydrogen-bond formation in this case is a change in the direction of quaternization of the aza group, as demonstrated by spectral evidence. Therefore, it is undoubtedly a rate-enhancing interaction. [Pg.308]

Heterocyclic compounds that have water bound covalently across a C=N bond behave as secondary alcohols. When subjected to very gentle oxidative conditions, they are converted into the corresponding 0x0 compounds. Potassium permanganate in 0. IN sodium hydroxide at room temperature has been used to oxidize 2- and 6-hydroxypteri-dine to 2,4- and 6,7-dihydroxypteridine, respectively. In contrast, 4-hydroxypteridine was not attacked by this reagent even at 100°. Hydrogen peroxide in acid solution was used to oxidize quinazoline quinazoline 3-oxide 1,3,5-, 1,3,7-, and 1,3,8-triazanaphthalene and pteridine (which hydrate across the 3,4-double bond in the... [Pg.13]

Other reactions that occur during hydrocracking are the fragmentation followed by hydrogenation (hydrogenolysis) of the complex asphaltenes and heterocyclic compounds normally present in the feeds. [Pg.80]

Kinetic studies of base-catalysed hydrogen exchange of heterocyclic compounds have been carried out. Paudler and Helmick515 measured second-order rate coefficients for deuteration of derivatives of imidazo[l,2-a]pyridine(XXXIII), imidazo[l,2-a]pyrimidine(XXXIV), and 1,2,4-triazolo[1,5-a]pyrimidine(XXXV)... [Pg.276]

Heterocyclic compounds are frequently used as hydrogen donors in the reduction of C-C double and triple bonds catalyzed by complexes of transition metals. Cyclic ethers such as [l,4]dioxane (39) and 2,3-dihydrofuran are known to donate a pair of hydrogen atoms to this type of compound. 2,3-Dihydro-[l,4]di-oxine (41), the product of dioxane (39), is not able to donate another pair of hydrogen atoms [46, 60, 73, 74]. These heterocyclic compounds are in general also very good solvents for both the catalyst and the substrates. [Pg.599]

Nitrogen-containing heterocyclic compounds, including 1,2,3,4-tetrahydroqui-noline, piperidine, pyrrolidine and indoline, are also popular hydrogen donors for the reduction of aldehydes, alkenes, and alkynes [75, 76]. With piperidine as hydrogen donor, the highly reactive 1-piperidene intermediate undergoes trimer-ization or, in the presence of amines, an addition reaction [77]. Pyridine was not observed as a reaction product. [Pg.599]

The first isolable alkenetitanium complex, the bis(pentamethylcyclopentadienyl)-titanium—ethylene complex 5, was prepared by Bercaw et al. by reduction of bis(penta-methylcyclopentadienyl)titanium dichloride in toluene with sodium amalgam under an atmosphere of ethylene (ca. 700 Torr) or from ( (n-C5Mc5)2Ti 2(fJ-N2)2 by treatment with ethylene [42], X-ray crystal structure analyses of 5 and of the ethylenebis(aryloxy)trimethyl-phosphanyltitanium complex 6 [53] revealed that the coordination of ethylene causes a substantial increase in the carbon—carbon double bond length from 1.337(2) A in free ethylene to 1.438(5) A and 1.425(3) A, respectively. Considerable bending of the hydrogen atoms out of the plane of the ethylene molecule is also observed. By comparison with structural data for other ethylene complexes and three-membered heterocyclic compounds, the structures of 5 and 6 would appear to be intermediate along the continuum between a Ti(11)-ethylene (4A) and a Ti(IV)-metallacyclopropane (4B) (Scheme 11.1) as... [Pg.391]

This condensation is completely analogous to that of ethyl diazoacetate, mentioned on p. 281, and, in general, azides and aliphatic diazo-compounds are strikingly similar in the manner in which they react with unsaturated substances like acetylenes, olefine derivatives, and hydrogen cyanide to yield heterocyclic compounds. [Pg.290]


See other pages where Heterocyclic compounds hydrogenation is mentioned: [Pg.1490]    [Pg.35]    [Pg.80]    [Pg.454]    [Pg.1490]    [Pg.35]    [Pg.80]    [Pg.454]    [Pg.1115]    [Pg.215]    [Pg.344]    [Pg.21]    [Pg.646]    [Pg.894]    [Pg.312]    [Pg.252]    [Pg.28]    [Pg.930]    [Pg.1009]    [Pg.86]    [Pg.39]    [Pg.1115]    [Pg.163]    [Pg.825]    [Pg.369]    [Pg.70]    [Pg.62]    [Pg.442]    [Pg.261]    [Pg.9]    [Pg.1217]   
See also in sourсe #XX -- [ Pg.808 ]




SEARCH



Compounds hydrogen

Heterocycles, hydrogenation

Hydrogenated compounds

Hydrogenation compounds

Hydrogenous compounds

© 2024 chempedia.info