Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocation intermediate addition reactions with alkenes

A common feature of these intermediates is that they are of high energy, compared to structures with completely filled valence shells. Their lifetimes are usually very short. Bond formation involving carbocations, carbenes, and radicals often occurs with low activation energies. This is particularly true for addition reactions with alkenes and other systems having it bonds. These reactions replace a tt bond with a ct bond and are usually exothermic. [Pg.861]

Addition reactions with alkenes to form cyclopropanes are the best-studied reactions of carbene intermediates, in terms of understanding carbene mechanisms and synthetic applications. Doering, in 1954, first reported the formation of cyclopropanes by the 1,2-addition of carbenes to alkenes. Singlet and triplet carbenes exhibit some important differences. Because it has an empty p orbital (like a carbocation) and a nonbonded pair of electrons (Hke a carbanion), the singlet carbene exhibits both carbocation and carbanion character. However, the triplet carbene behaves more as a diradical. These characteristics influence the types and stereochemistries of carbene reactions. A concerted mechanism is possible for singlet carbenes. As a result, the stereochemistry present in the alkene is retained in the cyclopropane. [Pg.168]

Water adds to alkenes to yield alcohols, a process called hydration. The reaction takes place on treatment of the alkene with water and a strong acid catalyst (HA) by a mechanism similar to that of HX addition. Thus, protonation of an alkene double bond yields a carbocation intermediate, which reacts with water to yield a protonated alcohol product (ROH2+). Loss of H+ from this protonated alcohol gives the neutral alcohol and regenerates the acid catalyst (Figure 7.2). [Pg.220]

In the early days of alkene chemistry, some researchers found that the hydrohalogenation of alkenes followed Markovnikov s rule, while others found that the same reaction did not. For example, when freshly distilled but-l-ene was exposed to hydrogen bromide, the major product was 2-bromopropane, as expected by Markovnikov s rule. However, when the same reaction was carried out with a sample of but-l-ene that had been exposed to air, the major product was 1-bromopropane formed by antl-Markovnikov addition. This caused considerable confusion, but the mystery was solved by the American chemist, Morris Kharasch, in the 1930s. He realised that the samples of alkenes that had been stored in the presence of air had formed peroxide radicals. The hydrohalogenation thus proceeded by a radical chain reaction mechanism and not via the mechanism involving carbocation intermediates as when pure alkenes were used. [Pg.66]

Conjugated dienes have alternating single and double bonds. They may undergo 1,2- or 1,4-addition. Allylic carbocations, which are stabilized by resonance, are intermediates in both the 1,2- and 1,4-additions (Sec. 3.15a). Conjugated dienes also undergo cycloaddition reactions with alkenes (Diels-Alder reaction), a useful synthesis of six-membered rings (Sec. 3.15b). [Pg.37]

The mechanism of the substitution reaction depends on the structure of the alcohol. Secondary and tertiary alcohols undergo SnI reactions. The carbocation intermediate formed in the SnI reaction has two possible fates It can combine with a nucleophile and form a substitution product, or it can lose a proton and form an elimination product. However, only the substitution product is actually obtained, because any alkene formed in an elimination reaction will undergo a subsequent addition reaction with HX to form more of the substitution product. [Pg.438]

The reaction of bromine with (E)-stilbene (47) to give meso-stilbene dibromide (48) as the major product (Eq. 10.21) is another example of an electrophilic addition reaction of alkenes. The addition of bromine to many alkenes is a stereospecific reaction that proceeds by anti addition to the double bond. However, the addition of bromine to 47 is not stereospecific because small amounts of dl-stilbene dibromide (49) are also formed in this reaction. The formation of wreso-stilbene dibromide presumably occurs via the nucleophilic attack of bromide on the intermediate cyclic bromonium ion, 50. The possible interconversion of 50 and the acyclic carbocation 51 (Eq. 10.22) is one possible way to account for the presence of dl-stilbene dibromide in the product. [Pg.376]

The proposed mechanism is consistent with the experimental observations discussed earlier in this section. The reaction proceeds via a Markovnikov addition, just as we saw for hydrohalogenation, because there is a strong preference for the reaction to proceed via the more stable carbocation intermediate. Similarly, reaction rates for substituted alkenes can be justified by comparing the carbocation intermediates in each case. Reactions that proceed via tertiary carbocations will generally occur more rapidly than reactions that proceed via secondary carbocations. [Pg.407]

When an alkene undergoes an electrophilic addition reaction with HBr, the first step is a relatively slow addition of a proton (an electrophile) to the alkene (a nucleophile). A carbocation intermediate (an electrophile) is formed, which then reacts rapidly with a bromide ion (a nucleophile) to form an alkyl halide. Notice that each step involves the reaction of an electrophile with a nucleophile. The overall reaction is the addition of an electrophile to one of the sp carbons of the alkene and the addition of a nucleophile to the other sp carbon (Section 5.6). [Pg.236]

We recall from our discussion of alkenes in Chapter 6 that unsymmetrical reagents such as HCl add to 71 bonds. In these reactions, the electrophilic proton reacts with the n bond to give an intermediate carbocation whose stability determines the position of electrophilic attack on the double bond. The carbocation intermediate then reacts with a nucleophile to give the addition product. [Pg.633]

The reaction begins with an attack on the electrophile, HBr, by the electrons of the nucleophilic tt bond. Two electrons from the 7t bond form a new u bond between the entering hydrogen and an alkene carbon, as shown by the curved arrow at the top of Figure 6.7. The carbocation intermediate that results is itself an electrophile, which can accept an electron pair from nucleophilic Br ion to form a C Brbond and yield a neutral addition product. [Pg.188]

Problem 6.18 What about the second step in the electrophilic addition of HCl to an alkene—the reaction of chloride ion with the carbocation intermediate Is this step exergonic or endergontc Does the transition state for this second step resemble the reactant (carbocation) or product (alkyl chloride) Make a rough drawing of what the transition-state structure might look like. [Pg.199]

Aikene chemistry is dominated by electrophilic addition reactions. When HX reacts with an unsymmetrically substituted aikene, Markovnikov s rule predicts that the H will add to the carbon having fewer alky) substituents and the X group will add to the carbon having more alkyl substituents. Electrophilic additions to alkenes take place through carbocation intermediates formed by reaction of the nucleophilic aikene tt bond with electrophilic H+. Carbocation stability follows the order... [Pg.204]

The following carbocation is an intermediate in the electrophilic addition reaction of HCl with two different alkenes. Identify both, and tell which C-H bonds in the carbocation are aligned for hyperconjugation with the vacant p orbital on the positively charged carbon. [Pg.205]

Two SN1 reactions occur during the biosynthesis of geraniol, a fragrant alcohol found in roses and used in perfumery. Geraniol biosynthesis begins with dissociation of dimethylallyl diphosphate to give an allylic carbocation, which reacts with isopentenyl diphosphate (Figure IT 15). From the viewpoint of isopentenyl diphosphate, the reaction is an electrophilic alkene addition, but from tile viewpoint of dimethylallyl diphosphate, the process in an Sjjl reaction in which the carbocation intermediate reacts with a double bond as the nucleophile. [Pg.382]

A second difference between alkene addition and aromatic substitution occurs after the carbocation intermediate has formed. Instead of adding Br- to give an addition product, the carbocation intermediate loses H+ from the bromine-bearing carbon to give a substitution product. Note that this loss of H+ is similar to what occurs in the second step of an El reaction (Section 11.10). The net effect of reaction of Br2 with benzene is the substitution of H+ by Br+ by the overall mechanism shown in Figure 16.2. [Pg.549]

There are, however, serious problems that must be overcome in the application of this reaction to synthesis. The product is a new carbocation that can react further. Repetitive addition to alkene molecules leads to polymerization. Indeed, this is the mechanism of acid-catalyzed polymerization of alkenes. There is also the possibility of rearrangement. A key requirement for adapting the reaction of carbocations with alkenes to the synthesis of small molecules is control of the reactivity of the newly formed carbocation intermediate. Synthetically useful carbocation-alkene reactions require a suitable termination step. We have already encountered one successful strategy in the reaction of alkenyl and allylic silanes and stannanes with electrophilic carbon (see Chapter 9). In those reactions, the silyl or stannyl substituent is eliminated and a stable alkene is formed. The increased reactivity of the silyl- and stannyl-substituted alkenes is also favorable to the synthetic utility of carbocation-alkene reactions because the reactants are more nucleophilic than the product alkenes. [Pg.862]

The quantitation of products that form in low yields requires special care with HPLC analyses. In cases where the product yield is <1%, it is generally not feasible to obtain sufficient material for a detailed physical characterization of the product. Therefore, the product identification is restricted to a comparison of the UV-vis spectrum and HPLC retention time with those for an authentic standard. However, if a minor reaction product forms with a UV spectrum and HPLC chromatographic properties similar to those for the putative substitution or elimination reaction, this may lead to errors in structural assignments. Our practice is to treat rate constant ratios determined from very low product yields as limits, until additional evidence can be obtained that our experimental value for this ratio provides a chemically reasonable description of the partitioning of the carbocation intermediate. For example, verification of the structure of an alkene that is proposed to form in low yields by deprotonation of the carbocation by solvent can be obtained from a detailed analysis of the increase in the yield of this product due to general base catalysis of carbocation deprotonation.14,16... [Pg.74]

The behavior of members of the bicyclo[2.2.1]heptene family is also different from that of other common 1,2-disubstituted alkenes.230 The parent bicy-clo[2.2.1]heptene gives bicyclo[2.2.1]heptane in only 3.5% yield when it is treated with Et3SiH/TFA. The major product is reported to be a 2-bicyclo[2.2.1]heptyl trifluoroacetate of unspecified configuration (Eq. 70).230 The carbocation intermediate is presumably the 2-norbornyl cation. Addition of small amounts of boron trifluoride etherate to the reaction mixture causes the yield of hydrocarbon product to rise to 22% after a reaction time of 24 hours at room temperature. Further... [Pg.36]

Hydride transfer from alkenes was also proposed to occur during sulfuric acid-catalyzed alkylation modified with anthracene (77). Then the butene loses a hydride and forms a cyclic carbocation intermediate, yielding—on reaction with isobutene—trimethylpentyl cations. This conclusion was drawn from the observation of a sharp decrease in 2,2,3-TMP selectivity upon addition of anthracene to the acid. [Pg.268]

Addition of water to an unsymmetrical alkene follows Markovnikov s rule. The reaction is highly regiospecific. According to Markovnikov s rule, in the addition of water (H—OH) to alkene, the hydrogen atom adds to the least substituted carbon of the double bond. For example, 2-methylpro-pene reacts with H2O in the presence of dilute H2SO4 to form t-butyl alcohol. The reaction proceeds via protonation to give the more stable tertiary carbocation intermediate. The mechanism is the reverse of that for dehydration of an alcohol. [Pg.204]

The simple carbocation intermediate of Equation 10-1 does not account for formation of the antarafacial-addition product. The results with SN1 reactions (Section 8-6) and the atomic-orbital representation (see Section 6-4E) predict that the bonds to the positively charged carbon atom of a carbocation should lie in a plane. Therefore, in the second step of addition of bromine to cyclo-alkenes, bromide ion could attack either side of the planar positive carbon to give a mixture of cis- and trans-1,2-dibromocyclohexanes. Nonetheless, antarafacial addition occurs exclusively ... [Pg.365]

We may seem to have contradicted ourselves because Equation 10-1 shows a carbocation to be formed in bromine addition, but Equation 10-5 suggests a bromonium ion. Actually, the formulation of intermediates in alkene addition reactions as open ions or as cyclic ions is a controversial matter, even after many years of study. Unfortunately, it is not possible to determine the structure of the intermediate ions by any direct physical method because, under the conditions of the reaction, the ions are so reactive that they form products more rapidly than they can be observed. However, it is possible to generate stable bromonium ions, as well as the corresponding chloronium and iodonium ions. The technique is to use low temperatures in the absence of any strong nucleophiles and to start with a 1,2-dihaloalkane and antimony penta-fluoride in liquid sulfur dioxide ... [Pg.366]

The diagram above refers to thermodynamic stability. When we discuss addition reactions you will see that the most stable alkene when mixed with an electrophile is the most reactive according to this diagram. This paradox is due to the intermediate, usually a carbocation. Since a tertiary carbocation is more stable, the energy of activation is lowered and a reaction with a tertiary intermediate proceeds more quickly in general, to predict the alkene product, use the above diagram as a reference, but to predict the most reactive alkene to an electrophile, the order is based on cation formation and is nearly reversed. [Pg.34]


See other pages where Carbocation intermediate addition reactions with alkenes is mentioned: [Pg.3257]    [Pg.3256]    [Pg.351]    [Pg.412]    [Pg.361]    [Pg.359]    [Pg.224]    [Pg.235]    [Pg.1052]    [Pg.53]    [Pg.290]    [Pg.1337]    [Pg.68]    [Pg.22]    [Pg.191]    [Pg.228]    [Pg.369]    [Pg.740]    [Pg.369]    [Pg.190]   


SEARCH



1,4-7/Addition intermediate

Addition reactions alkenes

Alkenes carbocation intermediates

Alkenes intermediates

Alkenes, addition reactions carbocation intermediate

Carbocation addition

Carbocation intermediates

Carbocation reactions

Carbocations addition

Carbocations alkenes

Carbocations intermediates

Carbocations reactions

Carbocations reactions with

Reaction with alkenes

With intermediates

© 2024 chempedia.info