Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism radical chain reactions

Ethylene Dichloride Pyrolysis to Vinyl Chloride. Thermal pyrolysis or cracking of EDC to vinyl chloride and HCl occurs as a homogenous, first-order, free-radical chain reaction. The accepted general mechanism involves the four steps shown in equations 10—13 ... [Pg.419]

The mechanism by which an oiganic material (RH) undergoes autoxidation involves a free-radical chain reaction (3—5) ... [Pg.222]

The oxidation of hydrocarbons, including hydrocarbon polymers, takes the form of a free-radical chain reaction. As a result of mechanical shearing, exposure of ultraviolet radiation, attack by metal ions such as those of copper and manganese as well as other possible mechanisms, a hydrocarbon molecule breaks down into two radicals... [Pg.134]

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

Atoms and free radicals are highly reactive intermediates in the reaction mechanism and therefore play active roles. They are highly reactive because of their incomplete electron shells and are often able to react with stable molecules at ordinary temperatures. They produce new atoms and radicals that result in other reactions. As a consequence of their high reactivity, atoms and free radicals are present in reaction systems only at very low concentrations. They are often involved in reactions known as chain reactions. The reaction mechanisms involving the conversion of reactants to products can be a sequence of elementary steps. The intermediate steps disappear and only stable product molecules remain once these sequences are completed. These types of reactions are refeiTcd to as open sequence reactions because an active center is not reproduced in any other step of the sequence. There are no closed reaction cycles where a product of one elementary reaction is fed back to react with another species. Reversible reactions of the type A -i- B C -i- D are known as open sequence mechanisms. The chain reactions are classified as a closed sequence in which an active center is reproduced so that a cyclic reaction pattern is set up. In chain reaction mechanisms, one of the reaction intermediates is regenerated during one step of the reaction. This is then fed back to an earlier stage to react with other species so that a closed loop or... [Pg.16]

Wawzonek et al. first investigated the mechanism of the cyclization of A-haloamines and correctly proposed the free radical chain reaction pathway that was substantiated by experimental data. "" Subsequently, Corey and Hertler examined the stereochemistry, hydrogen isotope effect, initiation, catalysis, intermediates, and selectivity of hydrogen transfer. Their results pointed conclusively to a free radical chain mechanism involving intramolecular hydrogen transfer as one of the propagation steps. Accordingly, the... [Pg.89]

The allylic bromination of an olefin with NBS proceeds by a free-radical chain mechanism. The chain reaction initiated by thermal decomposition of a free-radical initiator substance that is added to the reaction mixture in small amounts. The decomposing free-radical initiator generates reactive bromine radicals by reaction with the N-bromosuccinimide. A bromine radical abstracts an allylic hydrogen atom from the olefinic subsfrate to give hydrogen bromide and an allylic radical 3 ... [Pg.299]

Bateman, Gee, Barnard, and others at the British Rubber Producers Research Association [6,7] developed a free radical chain reaction mechanism to explain the autoxidation of rubber which was later extended to other polymers and hydrocarbon compounds of technological importance [8,9]. Scheme 1 gives the main steps of the free radical chain reaction process involved in polymer oxidation and highlights the important role of hydroperoxides in the autoinitiation reaction, reaction lb and Ic. For most polymers, reaction le is rate determining and hence at normal oxygen pressures, the concentration of peroxyl radical (ROO ) is maximum and termination is favoured by reactions of ROO reactions If and Ig. [Pg.105]

Structurally simple alJkyl halides can sometimes be prepared by reaction of an alkane with Cl2 or Br2 through a radical chain-reaction pathway (Section 5.3). Although inert to most reagents, alkanes react readily with Cl2 or Br2 in the presence of light to give alkyl halide substitution products. The reaction occurs by the radical mechanism shown in Figure 10.1 for chlorination. [Pg.335]

The presence of one carbonyl group per oligomer molecule was also ascertained. The orange colour of the resin suggested that some minor event during the photopolymerization produced chromophores in small concentrations. The presence of furoin among the products corroborated the proposed mechanism, which was shown not to involve free radical chain reactions. [Pg.67]

In the mechanisms considered so far, there have only been one or two intermediates. In a chain reaction, a highly reactive intermediate reacts to produce another highly reactive intermediate, which reacts to produce another, and so on (Fig. 13.19). In many cases, the reaction intermediate—which in this context is called a chain carrier—is a radical, and the reaction is called a radical chain reaction. In a radical chain reaction, one radical reacts with a molecule to produce another radical, that radical goes on to attack another molecule to produce yet another radical, and so on. The ideas presented in the preceding sections apply to chain reactions, too, but they often result in very complex rate laws, which we will not derive. [Pg.673]

Scheme 22 Mechanism of radical chain reactions of the growth of styrene line along the edge of a dimer (left side) and of the growth of allyl mercaptan line across the dimer rows (right side) of a H-Si(l 0 0)-2 x 1 surface. Scheme 22 Mechanism of radical chain reactions of the growth of styrene line along the edge of a dimer (left side) and of the growth of allyl mercaptan line across the dimer rows (right side) of a H-Si(l 0 0)-2 x 1 surface.
H2O may be replaced by any acid, HA, and a cyclic mechanism for the breakdown of the ester is quite feasible. For oxidation in alkali the fractional order in hydroxide ion, the low kjkjy and low degree of oxygen-transfer from oxidant are taken as symptomatic of a free-radical chain reaction of the type... [Pg.312]

Thus, the enhancements in chlorine removal from W diads compared to EV diads and from m-W diads compared to r-W diads observed in the (n-Bu)3SnH reduction of DCP, TCH, and PVC are consistent with the free-radical chain reaction mechanism. Inductive effects produced by neighboring 7-Cl s tend to favor the reduction of W diads relative to EV diads and steric interactions resulting from different preferred conformations in each isomer favor the removal of Cl from m-W diads relative to r-W diads. [Pg.375]

It is assumed that all similar fluorination reactions proceed via an intricate radical chain-reaction mechanism. The overall reactions for the substitution of hydrogen by fluorine (RH + F2 - RF + HF, AH298 -430 kJ/mol per carbon atom) are more exothermic than the reactions for adding fluorine to the double bonds... [Pg.228]

On the other hand, several ROS are highly cytotoxic. Consequently, eukaryotic cells have developed an elaborate arsenal of antioxidant mechanisms to neutrahze their deleterious effects (enzymes such as superoxide dismutases, catalases, glutathione peroxidases, thioredoxin inhibitors of free-radical chain reaction such as tocopherol, carotenoids, ascorbic acid chelating proteins such as lactoferrin and transferrin). It can be postulated that ROS may induce an oxidative stress leading to cell death when the level of intracellular ROS exceeds an undefined threshold. Indeed, numerous observations have shown that ROS are mediators of cell death, particularly apoptosis (Maziere et al., 2000 Girotti, 1998 Kinscherf et al., 1998 Suzuki et al., 1997 Buttke and Sanstrom, 1994 Albina et al., 1993). [Pg.133]

In the early days of alkene chemistry, some researchers found that the hydrohalogenation of alkenes followed Markovnikov s rule, while others found that the same reaction did not. For example, when freshly distilled but-l-ene was exposed to hydrogen bromide, the major product was 2-bromopropane, as expected by Markovnikov s rule. However, when the same reaction was carried out with a sample of but-l-ene that had been exposed to air, the major product was 1-bromopropane formed by antl-Markovnikov addition. This caused considerable confusion, but the mystery was solved by the American chemist, Morris Kharasch, in the 1930s. He realised that the samples of alkenes that had been stored in the presence of air had formed peroxide radicals. The hydrohalogenation thus proceeded by a radical chain reaction mechanism and not via the mechanism involving carbocation intermediates as when pure alkenes were used. [Pg.66]


See other pages where Mechanism radical chain reactions is mentioned: [Pg.145]    [Pg.44]    [Pg.266]    [Pg.334]    [Pg.395]    [Pg.348]    [Pg.79]    [Pg.90]    [Pg.61]    [Pg.202]    [Pg.222]    [Pg.1057]    [Pg.160]    [Pg.166]    [Pg.169]    [Pg.169]    [Pg.945]    [Pg.182]    [Pg.1057]    [Pg.374]    [Pg.98]    [Pg.218]    [Pg.98]    [Pg.498]    [Pg.146]    [Pg.85]    [Pg.164]    [Pg.164]    [Pg.242]    [Pg.620]    [Pg.627]    [Pg.143]    [Pg.228]    [Pg.210]   
See also in sourсe #XX -- [ Pg.95 , Pg.142 ]




SEARCH



Chain radical

Chain reactions, free-radical mechanism

Influence of Organic Carbon on the Radical Chain Reaction Mechanism

Mechanism radical chain

Radical chain reactions

Radical chain reactions mechanism example

Radical mechanism

Radical reactions mechanisms

Radicals radical chain reaction

Reaction mechanisms chain reactions

© 2024 chempedia.info