Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes difference between

A major difficulty with the Diels-Alder reaction is its sensitivity to sterical hindrance. Tri- and tetrasubstituted olefins or dienes with bulky substituents at the terminal carbons react only very slowly. Therefore bicyclic compounds with polar reactions are more suitable for such target molecules, e.g. steroids. There exist, however, several exceptions, e. g. a reaction of a tetrasubstituted alkene with a 1,1-disubstituted diene to produce a cyclohexene intermediate containing three contiguous quaternary carbon atoms (S. Danishefsky, 1979). This reaction was assisted by large polarity differences between the electron rich diene and the electron deficient ene component. [Pg.86]

The most striking difference between alkenes and alkynes is that terminal alkynes are weakly acidic. When a terminal alkyne is treated with a strong base, such as sodium amide, Na+ -NH2, the terminal hydrogen is removed and an acetylide anion is formed. [Pg.270]

One of the most striking differences between conjugated dienes and typical alkenes is in their electrophilic addition reactions. To review briefly, the addition of an electrophile to a carbon-carbon double bond is a general reaction of alkenes (Section 6.7). Markovnikov regiochemistry is found because the more stable carbo-cation is formed as an intermediate. Thus, addition of HC1 to 2-methylpropene yields 2-chloro-2-methylpropane rather than l-chloro-2-methylpropane, and addition of 2 mol equiv of HC1 to the nonconjugated diene 1,4-pentadiene yields 2,4-dichloropentane. [Pg.487]

Perhaps the most striking difference between conjugated and nonconjugated dienes is that conjugated dienes undergo an addition reaction with alkenes to yield substituted cyclohexene products. For example, 1,3-butadiene and 3-buten-2-one give 3-cycIohexenyl methyl ketone. [Pg.492]

A second difference between alkene addition and aromatic substitution occurs after the carbocation intermediate has formed. Instead of adding Br- to give an addition product, the carbocation intermediate loses H+ from the bromine-bearing carbon to give a substitution product. Note that this loss of H+ is similar to what occurs in the second step of an El reaction (Section 11.10). The net effect of reaction of Br2 with benzene is the substitution of H+ by Br+ by the overall mechanism shown in Figure 16.2. [Pg.549]

The bromination of benzene illustrates the difference between addition to alkenes and substitution of arenes. First, to achieve the bromination of benzene it is necessary to use a catalyst, such as iron(III) bromide. The catalyst acts as a Lewis acid, binding to the bromine molecule (a Lewis base) and ensuring that the outer bromine atom has a pronounced partial positive charge ... [Pg.862]

The more-substituted alkene (Zaitsev product) is the major product. However, there is one critical difference between the regiochemical outcomes of El and E2 reactions. Specifically, we have seen that the regiochemical outcome of an E2 reaction can often be controlled by carefully choosing the base (sterically hindered or not sterically hindered), hi contrast, the regiochemical outcome of an El process cannot be controlled. The Zaitsev product will generally be obtained. [Pg.233]

In each mechanism above, the first step involves protonation of the alkene to form a carbocation. Then, in both cases, a nucleophile (either X or H2O) attacks the car-bocation to give a product. The difference between these two reactions is in the nature of the product. The first reaction above (hydrohalogenation) gives a product that is neutral (no charge). However, the second reaction above (hydration) produced a charged species. Therefore, one more step is necessary at the end of the hydration reaction— we must get rid of the positive charge. To do this, we simply deprotonate ... [Pg.272]

As already indicated, the carbometallation reactions of zirconacyclopropanes and zirconacyclopropenes with alkenes and alkynes are in many ways similar to the corresponding reactions of titanacycles developed more recently. At the same time, however, there are a number of significant differences, as detailed in Section 10.06.2.2. At the present time, synthetically useful carbotitanation reactions are predominantly cyclic and stoichiometric in Ti and more so than the corresponding chemistry of Zr. It seems reasonable to state that Ti and Zr are complementary to each other more often than not. The cyclic carbozirconation may be either stoichiometric or catalytic. Frequently, the difference between the two is that the stoichiometric reactions lack one or more microsteps for completing catalytic cycles. Otherwise, they often share same stoichiometric microsteps. With this general notion in mind, many stoichiometric carbozirconation reactions have indeed been developed into Zr-catalyzed reactions, as discussed later. [Pg.276]

Like styrene, acrylonitrile is a non-nucleophilic alkene which can stabilise the electron-rich molybdenum-carbon bond and therefore the cross-/self-metathe-sis selectivity was similarly dependent on the nucleophilicity of the second alkene [metallacycle 10 versus 12, see Scheme 2 (replace Ar with CN)]. A notable difference between the styrene and acrylonitrile cross-metathesis reactions is the reversal in stereochemistry observed, with the cis isomer dominating (3 1— 9 1) in the nitrile products. In general, the greater the steric bulk of the alkyl-substituted alkene, the higher the trans cis ratio in the product (Eq. 11). [Pg.171]

The technology and chemistry of isoalkane-alkene alkylation have been thoroughly reviewed for both liquid and solid acid catalysts (15) and for solid acid catalysts alone (16). The intention of this review is to provide an up-to-date overview of the alkylation reaction with both liquid and solid acids as catalysts. The focus is on the similarities and differences between the liquid acid catalysts on one hand and solid acid catalysts, especially zeolites, on the other. Thus, the reaction mechanism, the physical properties of the individual catalysts, and their consequences for successful operation are reviewed. The final section is an overview of existing processes and new process developments utilizing solid acids. [Pg.255]

It is observed that insertion into a zirconacyclopentene 163, which is not a-substituted on either the alkyl and alkenyl side of the zirconium, shows only a 2.2 1 selectivity in favor of the alkyl side. Further steric hindrance of approach to the alkyl side by the use of a terminally substituted trans-alkene in the co-cyclization to form 164 leads to complete selectivity in favor of insertion into the alkenyl side. However, insertion into the zirconacycle 165 derived from a cyclic alkene surprisingly gives complete selectivity in favor of insertion into the alkyl side. In the proposed mechanism of insertion, attack of a carbenoid on the zirconium atom to form an ate complex must occur in the same plane as the C—Zr—C atoms (lateral attack 171 Fig. 3.3) [87,88]. It is not surprising that an a-alkenyl substituent, which lies precisely in that plane, has such a pronounced effect. The difference between 164 and 165 may also have a steric basis (Fig. 3.3). The alkyl substituent in 164 lies in the lateral attack plane (as illustrated by 172), whereas in 165 it lies well out of the plane (as illustrated by 173). However, the difference between 165 and 163 cannot be attributed to steric factors 165 is more hindered on the alkyl side. A similar pattern is observed for insertion into zirconacyclopentanes 167 and 168, where insertion into the more hindered side is observed for the former. In the zirconacycles 169 and 170, where the extra substituent is (3 to the zirconium, insertion is remarkably selective in favor of the somewhat more hindered side. [Pg.105]

Isobutene - In contrast to the complicated picture presented by the polymerisations of most other alkenes, the polymerisation of isobutene at low temperatures is a clean reaction with apparently few complications [10, 16, 17, 18]. The propagation step seems to be a simple addition to the monomer of the tertiary carbonium ion at the growing end of the chain. This difference between the behaviour of isobutene and of most other olefins is so striking that isobutene could usefully be regarded as a standard of reference it would thus be possible to enquire into the behaviour of other olefins by comparing them and their polymers with isobutene and polyisobutene. [Pg.179]

It seems that these essential differences between alkenes and vinyl ethers were ignored when the kinetic interpretation of the polymerizations of alkenes by ionizing radiations were extended to the vinyl ethers, but any or all of them may help us to understand the behavioural differences between hydrocarbons and hetero-atomic monomers (see Section 4c). [Pg.348]

From the fundamental reaction-mechanistic point of view, the essential difference between the cationic and the pseudo-cationic mechanisms is this the attack of an ion on the double bond of an alkene to form a carbenium ion generally involves a 3-centred transition state in... [Pg.685]


See other pages where Alkenes difference between is mentioned: [Pg.199]    [Pg.31]    [Pg.50]    [Pg.133]    [Pg.628]    [Pg.199]    [Pg.932]    [Pg.153]    [Pg.303]    [Pg.315]    [Pg.159]    [Pg.196]    [Pg.860]    [Pg.1333]    [Pg.70]    [Pg.27]    [Pg.453]    [Pg.926]    [Pg.4]    [Pg.218]    [Pg.505]    [Pg.105]    [Pg.4]    [Pg.501]    [Pg.81]    [Pg.256]    [Pg.276]    [Pg.25]    [Pg.52]    [Pg.365]    [Pg.1080]    [Pg.17]    [Pg.251]    [Pg.251]    [Pg.477]    [Pg.40]   
See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Differences between

© 2024 chempedia.info