Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes unsymmetrical

Furthermore, the regioselective hydrogenolysis can be extended to internal allylic systems. In this case, clean differentiation of a tertiary carbon from a secondary carbon in an allylic system is a problem. The regioselectivity in the hydrogenolysis of unsymmetrically substituted internal allylic compounds depends on the nature and size of the substituents. The less substituted alkene 596 was obtained from 595 as the main product, but the selectivity was only... [Pg.371]

Let s compare the carbocation intermediates for addition of a hydrogen halide (HX) to an unsymmetrical alkene of the type RCH=CH2 (a) according to Markovnikov s rule and (b) opposite to Markovnikov s rule (a) Addition according to Markovnikov s rule... [Pg.238]

The addition of hydrogen halides to alkenes has been studied from a mechanistic point of view over a period of many years. One of the first aspects of the mechanism to be established was its regioselectivity, that is, the direction of addition. A reaction is described as regioselective if an unsymmetrical alkene gives a predominance of one of the two possible addition products the term regiospecific is used if one product is formed... [Pg.352]

As will be indicated when the mechanism is discussed in more detail, discrete carbocations may not be formed in all cases. An unsymmetrical alkene will nevertheless follow Markownikoff s rule, because the partial positive charge that develops will be located preferentially at the carbon that is better able to accommodate the electron deficiency, that is, the more substituted one. [Pg.353]

This mechanism explains the observed formation of the more highly substituted alcohol from unsymmetrical alkenes (Markownikoff s rule). A number of other points must be considered in order to provide a more complete picture of the mechanism. Is the protonation step reversible Is there a discrete carbocation intermediate, or does the nucleophile become involved before proton transfer is complete Can other reactions of the carbocation, such as rearrangement, compete with capture by water ... [Pg.358]

Markovnikov s rule is used to predict the regiochemistry of HX (electrophilic) addition reactions. The rule states that HX adds to an unsymmetrical alkene mainly in the direction that bonds H to the less substituted alkene carbon and X to the more substituted alkene carbon. [Pg.108]

Reaction of 2-chloromethyl-4//-pyrido[l,2-u]pyrimidine-4-one 162 with various nitronate anions (4 equiv) under phase-transfer conditions with BU4NOH in H2O and CH2CI2 under photo-stimulation gave 2-ethylenic derivatives 164 (01H(55)535). These alkenes 164 were formed by single electron transfer C-alkylation and base-promoted HNO2 elimination from 163. When the ethylenic derivative 164 (R = R ) was unsymmetrical, only the E isomer was isolated. Compound 162 was treated with S-nucleophiles (sodium salt of benzyl mercaptan and benzenesulfinic acid) and the lithium salt of 4-hydroxycoumarin to give compounds 165-167, respectively. [Pg.210]

When a mixture of alkenes 1 and 2 or an unsymmetrically substituted alkene 3 is treated with an appropriate transition-metal catalyst, a mixture of products (including fi/Z-isomers) from apparent interchange of alkylidene moieties is obtained by a process called alkene metathesis. With the development of new catalysts in recent years, alkene metathesis has become a useful synthetic method. Special synthetic applications are, for example, ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROM) (see below). [Pg.10]

The coupling of unsymmetrical ketones leads to formation of stereoisomeric alkenes the ratio depending on steric demand of substituents R ... [Pg.197]

Look carefully at the reactions shown in the previous section. In each case, an unsymmetrically substituted alkene has given a single addition product, rather than the mixture that might have been expected. As another example, 1-pentene might react with HC1 to give both 1-chloropentane and 2-chloropentane, but it doesn t. Instead, the reaction gives only 2-chloropentane as the sole product. We say that such reactions are regiospecific (ree-jee-oh-specific) when only one of two possible orientations of addition occurs. [Pg.191]

U Electrophilic addition to an unsymmetrically substituted alkene gives the more highly substituted carbocation intermediate. A more highly substituted carbocation forms faster than a less highly substituted one and, once formed, rapidly goes on to give the final product. [Pg.197]

Aikene chemistry is dominated by electrophilic addition reactions. When HX reacts with an unsymmetrically substituted aikene, Markovnikov s rule predicts that the H will add to the carbon having fewer alky) substituents and the X group will add to the carbon having more alkyl substituents. Electrophilic additions to alkenes take place through carbocation intermediates formed by reaction of the nucleophilic aikene tt bond with electrophilic H+. Carbocation stability follows the order... [Pg.204]

One of the features that makes the hydrobora ( ion reaction so useful is the regiochemistry that results when an unsymmetrical alkene is hydroborated. For example, hydroboration/oxidation of 1-methylcyclopentene yields trans-2-methylcydopentanol. Boron and hydrogen both add to the alkene from the same face of the double bond—that is, with syn stereochemistry, the opposite of anti—with boron attaching to the less highly substituted carbon. During the oxidation step, the boron is replaced by an -OH with the same stereochemistry, resulting in an overall syn non-Markovnikov addition of water. This stereochemical result is particularly useful because it is complementary to the Markovnikov regiochemistry observed for oxymercuration. [Pg.224]

In addition to its effect on stability, delocalization of the unpaired electron in the allyl radical has other chemical consequences. Because the unpaired electron is delocalized over both ends of the nr orbital system, reaction with Br2 can occur at either end. As a result, allylic bromination of an unsymmetrical alkene often leads to a mixture of products. For example, bromination of 1-octene gives a mixture of 3-bromo-l-octene and l-bromo-2-octene. The two products are not formed in equal amounts, however, because the intermediate allylic radical is... [Pg.341]

Various ab initio and scmi-cmpirical molecular orbital calculations have been carried out on the reaction of radicals with simple alkenes with the aim of defining the nature of the transition state (Section 1.2.7).2I>,j , 6 These calculations all predict an unsymmetrical transition state for radical addition (i.e. Figure 1.1) though they differ in other aspects. Most calculations also indicate a degree of charge development in the transition state. [Pg.20]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

Tripylborane is an interesting reagent which resembles thexylborane. One of the important uses of thexylborane lies in the synthesis of unsymmetrical thexyldialkylboranes which can then be used in the synthesis of unsymmetrical ketones. However, the reaction is only successful if the alkene used in the first hydroboration step is an internal alkene. Simple terminal alkenes such as 1-hexene react too rapidly with the initially formed thexylmonoalkylborane to allow the reaction to be stopped at that stage. Therefore, mixtures of products result (ref. 27). [Pg.59]

Ion 21 can either lose a proton or combine with chloride ion. If it loses a proton, the product is an unsaturated ketone the mechanism is similar to the tetrahedral mechanism of Chapter 10, but with the charges reversed. If it combines with chloride, the product is a 3-halo ketone, which can be isolated, so that the result is addition to the double bond (see 15-45). On the other hand, the p-halo ketone may, under the conditions of the reaction, lose HCl to give the unsaturated ketone, this time by an addition-elimination mechanism. In the case of unsymmetrical alkenes, the attacking ion prefers the position at which there are more hydrogens, following Markovnikov s rule (p. 984). Anhydrides and carboxylic acids (the latter with a proton acid such as anhydrous HF, H2SO4, or polyphosphoric acid as a catalyst) are sometimes used instead of acyl halides. With some substrates and catalysts double-bond migrations are occasionally encountered so that, for example, when 1 -methylcyclohexene was acylated with acetic anhydride and zinc chloride, the major product was 6-acetyl-1-methylcyclohexene. ... [Pg.784]

Alkylboranes can be coupled by treatment with silver nitrate and base." Since alkylboranes are easily prepared from alkenes (15-16), this is essentially a way of coupling and reducing alkenes in fact, alkenes can be hydroborated and coupled in the same flask. For symmetrical coupling (R = R ) yields range from 60 to 80% for terminal alkenes and from 35 to 50% for internal ones. Unsymmetrical coupling has also been carried out, but with lower yields. Arylboranes react similarly, yielding biaryls. The mechanism is probably of the free-radical type. [Pg.939]

It has tdready been pointed out that some additions are syn, with both groups, approaching from the same side, and that others are anti, with the groups approaching from opposite sides of the double or triple bond. For cyclic compounds, there are further aspects of steric orientation. In syn addition to an unsymmetrical cyclic alkene, the two groups can come in from the more-hindered face or from the... [Pg.986]

The diradical mechanism b is most prominent in the reactions involving fluorinated alkenes. These reactions are generally not stereospecificand are insensitive to solvent effects. Further evidence that a diion is not involved is that head-to-head eoupling is found when an unsymmetrical molecule is dimerized. Thus dimerization of F2C=CFC1 gives 106, not 107. If one pair of electrons moved before the other, the positive end of one molecule would be expeeted to attack the negative end of the other. [Pg.1080]

Unsymmetrical alkenes can be prepared from a mixture of two ketones, if one is in excess. " The mechanism consists of initial coupling of two radical species to give a 1,2-dioxygen compound (a titanium pinacolate), which is then deoxygenated. " ... [Pg.1562]

Allylic bromination of unsymmetrical alkenes may give many products. Occasionally one product is formed in reasonable yield, e.g. (3), but this is a matter for trial and error. [Pg.273]

The bottom line is regiochemistry is only relevant when adding two dijferent groups across an unsymmetrical alkene. [Pg.246]

In other words, we must determine whether the reaction is a Markovnikov addition or an anii-Markovnikov addition. As promised, the answer to this question is contained in the mechanism. In the first step of the mechanism, a proton was transferred to the alkene, to form a carbocation. When starting with an unsymmetrical alkene, we are confronted with two possible carbocations that can form (depending on where we place the proton) ... [Pg.261]

In the absence of water, we did not need to think about regiochemistry, because we were adding Br and Br. But now, in the presence of water, we are adding Br and OH (two different groups). As a result, the regiochemistry will be relevant if we start with an unsymmetrical alkene—for example,... [Pg.289]

The regioselective hydrozirconahon of internal unsymmetrical alkenes remains a challenge, as it could considerably expand the use of zirconocene complexes. Little is known about the mechanism of zirconium migration along an alkyl chain. [Pg.258]

As for alkenes, the rate of hydrozirconation of alkynes decreases with increasing substitution on the alkyne. An unsymmetrical diyne reacts with 1 preferentially at the less-substituted triple bond [85]. [Pg.265]


See other pages where Alkenes unsymmetrical is mentioned: [Pg.27]    [Pg.1040]    [Pg.1040]    [Pg.225]    [Pg.81]    [Pg.334]    [Pg.27]    [Pg.1040]    [Pg.1040]    [Pg.225]    [Pg.81]    [Pg.334]    [Pg.237]    [Pg.40]    [Pg.637]    [Pg.230]    [Pg.384]    [Pg.158]    [Pg.59]    [Pg.1524]    [Pg.303]    [Pg.245]    [Pg.87]    [Pg.47]    [Pg.68]    [Pg.233]    [Pg.290]    [Pg.305]   


SEARCH



Unsymmetric

Unsymmetric alkenes

© 2024 chempedia.info