Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions kinetics

Hay, D. R. Song, Z. Smith, S. G. Beak, P. Complex-induced proximity effects and dipole-stabilized carbanions kinetic evidence for the role of complexes in the a -lithiations of carboxamides./. Am. Chem. Soc. 1988, 110, 8145-8153. [Pg.206]

Chapters 1 and 2. Most C—H bonds are very weakly acidic and have no tendency to ionize spontaneously to form carbanions. Reactions that involve carbanion intermediates are therefore usually carried out in the presence of a base which can generate the reactive carbanion intermediate. Base-catalyzed condensation reactions of carbonyl compounds provide many examples of this type of reaction. The reaction between acetophenone and benzaldehyde, which was considered in Section 4.2, for example, requires a basic catalyst to proceed, and the kinetics of the reaction show that the rate is proportional to the catalyst concentration. This is because the neutral acetophenone molecule is not nucleophihc and does not react with benzaldehyde. The much more nucleophilic enolate (carbanion) formed by deprotonation is the reactive nucleophile. [Pg.229]

It has been found that there is often a correlation between the rate of deprotonation (kinetic acidity) and the thermodynamic stability of the carbanion (thermodynamic acidity). Because of this relationship, kinetic measurements can be used to construct orders of hydrocarbon acidities. These kinetic measurements have the advantage of not requiring the presence of a measurable concentration of the carbanion at any time instead, the relative ease of carbanion formation is judged from the rate at which exchange occurs. This method is therefore applicable to very weak acids, for which no suitable base will generate a measurable carbanion concentration. [Pg.407]

The kinetic method of determining relative acidity suffers from one serious complication, however. This complication has to do with the fate of the ion pair that is formed immediately on removal of the proton. If the ion pair separates and difiuses into the solution rapidly, so that each deprotonation results in exchange, the exchange rate is an accurate measure of the rate of deprotonation. Under many conditions of solvent and base, however, an ion pair may return to reactants at a rate exceeding protonation of the carbanion by the solvent. This phenomenon is called internal return ... [Pg.407]

This process is referred to as internal return, i.e., the base returns the proton to the carbanion faster than exchange of the protonated base with other solvent molecules occurs. If internal return is important under a given set of conditions, how would the correlation between kinetics of exchange and equilibrium acidity be affected How could the occurrence of internal return be detected experimentally ... [Pg.444]

Obviously the structures and yields of Birch reduction products are determined at the two protonation stages. The ring positions at which both protonations occur are determined kinetically the first protonation or 7t-complex collapse is rate determining and irreversible, and the second protonation normally is irreversible under the reaction conditions. In theory, the radical-anion could protonate at any one of the six carbon atoms of the ring and each of the possible cyclohexadienyl carbanions formed subsequently could protonate at any one of three positions. Undoubtedly the steric and electronic factors discussed above determine the kinetically favored positions of protonation, but at present it is difficult to evaluate the importance of each factor in specific cases. A brief summary of some empirical and theoretical data regarding the favored positions of protonation follows. [Pg.17]

Reduction of linearly conjugated 4,6-dien-3-ones with lithium-ammonia yields either 5-en-3-ones or 4-en-3-ones depending upon the work-up procedure. Protonation of the dienyl carbanion intermediate (58) occurs at C-7 to give ultimately the enolate ion (59) kinetic protonation of (59) occurs largely at C-4 to give the 5-en-3-one (60). ... [Pg.32]

Protonation of the a-carbanion (50), which is formed both in the reduction of enones and ketol acetates, probably first affords the neutral enol and is followed by its ketonization. Zimmerman has discussed the stereochemistry of the ketonization of enols and has shown that in eertain cases steric factors may lead to kinetically controlled formation of the thermodynamically less stable ketone isomer. Steroidal unsaturated ketones and ketol acetates that could form epimeric products at the a-carbon atom appear to yield the thermodynamically stable isomers. In most of the cases reported, however, equilibration might have occurred during isolation of the products so that definitive conclusions are not possible. [Pg.35]

Chloroquinoline (401) reacts well with potassium fluoride in dimethylsulfone while its monocyclic analog 2-chloropyridine does not. Greater reactivity of derivatives of the bicyclic azine is evident also from the kinetic data (Table X, p. 336). 2-Chloroquinoline is alkoxylated by brief heating with methanolic methoxide or ethano-lic potassium hydroxide and is converted in very high yield into the thioether by trituration with thiocresol (20°, few hrs). It also reacts with active methylene carbanions (45-100% yield). The less reactive 3-halogen can be replaced under vigorous conditions (160°, aqueous ammonia-copper sulfate), as used for 3-bromoquino-line or its iV-oxide. 4-Chloroquinoline (406) is substituted by alcoholic hydrazine hydrate (80°, < 8 hr, 20% yield) and by methanolic methoxide (140°, < 3 hr, > 90% yield). This apparent reversal of the relative reactivity does not appear to be reliable in the face of the kinetic data (Tables X and XI, pp. 336 and 338) and the other qualitative comparisons presented here. [Pg.364]

The preparation of enantiomerically enriched a-ketosulphoxides 272 was also based on a kinetic resolution involving the reaction of the carbanion 273 derived from racemic aryl methyl sulphoxides with a deficiency of optically active carboxylic esters 274334, (equation 151). The degree of stereoselectivity in this reaction is strongly dependent on the nature of both the group R and the chiral residue R in 274. Thus, the a-ketosulphoxide formed in the reaction with menthyl esters had an optical yield of 1.3% for R = Et. In the... [Pg.296]

Solladie and coworkers545 confirmed the earlier result of Nishihata and Nishio546 that the carbonation of the a-sulphinyl carbanion proceeds under kinetic control with retention of configuration at the metallated carbon atom. However, they also found that the stereochemical outcome of this reaction depends on other factors. They observed that 90% of asymmetric induction may be achieved under kinetic control (reaction time < 0.5 min) by using a base with low content of lithium salts, a result consistent with an electrophilic assistance by the lithium cation (equation 286)545. [Pg.339]

D. Kinetics of Other Reactions Proceeding via Carbanionic Intermediates. [Pg.483]

In this chapter it is clearly impossible to do more than sample the extensive literature on the carbon acidity of sulfinyl and sulfonyl compounds, as it illuminates the electronic effects of these groups, particularly in connection with linear free-energy relationships. There are three main areas to cover first, as already indicated, equilibrium acidities (pKa values) second, the kinetics of ionization, usually studied through hydrogen isotopic exchange and finally, the kinetics of other reactions proceeding via carbanionic intermediates. [Pg.524]

A study of the rates of water-catalyzed detritiation of six disulfonyl-activated carbon acids contains results of interest in connection with electronic effects192. Thus the carbanion stabilizing abilities of several groups as measured kinetically lie in the order SOzPh > SOzEt > S02Me. [Pg.527]

Goering and coworkers201 studied the kinetics of base-promoted dehydrohalogenation of several series of cis- or frans-2-chlorocycloalkyl aryl sulfones. For the trans-2-chlorocyclohexyl series reacting with sodium hydroxide in 80% ethanol at 0 °C the p value was 1.42. The mechanism was considered to involve rate-determining carbanion formation, with the subsequent loss of chloride ion in a fast step. [Pg.528]

This type of asymmetric conjugate addition of allylic sulfinyl carbanions to cyclopen-tenones has been applied successfully to total synthesis of some natural products. For example, enantiomerically pure (+ )-hirsutene (29) is prepared (via 28) using as a key step conjugate addition of an allylic sulfinyl carbanion to 2-methyl-2-cyclopentenone (equation 28)65, and (+ )-pentalene (31) is prepared using as a key step kinetically controlled conjugate addition of racemic crotyl sulfinyl carbanion to enantiomerically pure cyclopentenone 30 (equation 29) this kinetic resolution of the crotyl sulfoxide is followed by several chemical transformations leading to (+ )-pentalene (31)68. [Pg.835]

A different approach to the problem of hydrocarbon acidity, and hence carbanion stability, is that of Shatenshtein and Shapiro, who treated hydrocarbons with deuterated potassium amide and measured the rates of hydrogen exchange. The experiments did not measure thermodynamic acidity, since rates were measured, not positions of equilibria. They measured kinetic acidity, that is, which compounds... [Pg.228]

A. Alkaline Hydrolysis. -The low kinetic isotope effect observed in the protonation of carbanions formed in phosphonium salt hydrolysis leads to the idea that there is little breaking of the phosphorus-carbon bond and correspondingly little transfer of a proton to the incipient carbanion in the transition state (87) of the rate-determining step. ... [Pg.20]

Winstein Robinson (1958) used this concept to account for the kinetics of the salt effects on solvolysis reactions. They considered that carbonium ions (cations) and carbanions could exist as contact ion-pairs, solvated ion-pairs and as free ions and that all these forms participated in the reactions and were in equilibrium with each other. These equilibria can be represented, thus ... [Pg.72]


See other pages where Carbanions kinetics is mentioned: [Pg.200]    [Pg.149]    [Pg.200]    [Pg.149]    [Pg.12]    [Pg.324]    [Pg.34]    [Pg.382]    [Pg.407]    [Pg.13]    [Pg.17]    [Pg.30]    [Pg.34]    [Pg.158]    [Pg.20]    [Pg.210]    [Pg.525]    [Pg.528]    [Pg.692]    [Pg.704]    [Pg.107]    [Pg.229]    [Pg.334]    [Pg.153]    [Pg.11]    [Pg.419]    [Pg.422]    [Pg.423]    [Pg.23]   
See also in sourсe #XX -- [ Pg.45 , Pg.77 , Pg.89 ]

See also in sourсe #XX -- [ Pg.45 , Pg.77 , Pg.89 ]




SEARCH



Carbanions kinetic acidity

Dynamic kinetic resolution carbanion

© 2024 chempedia.info