Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugate addition kinetic control

Conjugated dienes undergo several reactions not observed for nonconjugated dienes. One is the 1,4-addition of electrophiles. When a conjugated diene is treated with an electrophile such as HCl, 1,2- and 1,4-addition products are formed. Both are formed from the same resonance-stabilized allylic carbocation intermediate and are produced in varying amounts depending on the reaction conditions. The L,2 adduct is usually formed faster and is said to be the product of kinetic control. The 1,4 adduct is usually more stable and is said to be the product of thermodynamic control. [Pg.507]

Both primary and secondary amines add to a /S-unsaturated aldehydes and ketones to yield /3-amino aldehydes and ketones rather than the alternative imines. Under typical reaction conditions, both modes of addition occur rapidly. But because the reactions are reversible, they generally proceed with thermodynamic control rather than kinetic control (Section 14.3), so the more stable conjugate addition product is often obtained to the complete exclusion of the less stable direct addition product. [Pg.727]

This type of asymmetric conjugate addition of allylic sulfinyl carbanions to cyclopen-tenones has been applied successfully to total synthesis of some natural products. For example, enantiomerically pure (+ )-hirsutene (29) is prepared (via 28) using as a key step conjugate addition of an allylic sulfinyl carbanion to 2-methyl-2-cyclopentenone (equation 28)65, and (+ )-pentalene (31) is prepared using as a key step kinetically controlled conjugate addition of racemic crotyl sulfinyl carbanion to enantiomerically pure cyclopentenone 30 (equation 29) this kinetic resolution of the crotyl sulfoxide is followed by several chemical transformations leading to (+ )-pentalene (31)68. [Pg.835]

Another enantioselective synthesis, shown in Scheme 13.18, involves a early kinetic resolution of the alcohol intermediate in Step B-2 by lipase PS. The stereochemistry at the C(7) methyl group is controlled by the exo selectivity in the conjugate addition (Step D-l). [Pg.1183]

When ene-nitrile oxidoisoquinolium betaine 131 was heated as a dilute solution in toluene to 120 °C (Scheme 1.15), near quantitative conversion to the cycloadduct 133, resulting from the undesired regioselectivity, was observed. While the near complete conversion to cycloadduct 133 of oxidoisoquinolinium betaine 131 indeed demonstrated complete avoidance of the conjugate addition pathway in favor of cycloaddition, initial production of undesired isomeric cycloadduct 133 (instead of 136) was disappointing. Notably, cycloadduct 133 is expected to be less kinetically favored based on frontier molecular orbital (FMO) analysis (assuming dipole HOMO-controlled cycloaddition) of the putative transition state. This result stands in contrast to the cycloaddition of nitroalkene oxidoisoquinolinium betaine... [Pg.17]

It was recognized in early examples of nucleophilic addition to acceptor-substituted allenes that formation of the non-conjugated product 158 is a kinetically controlled reaction. On the other hand, the conjugated product 159 is the result of a thermodynamically controlled reaction [205, 215]. Apparently, after the attack of the nucleophile on the central carbon atom of the allene 155, the intermediate 156 is formed first. This has to execute a torsion of 90° to merge into the allylic carbanion 157. Whereas 156 can only yield the product 158 by proton transfer, the protonation of 157 leads to both 158 and 159. [Pg.379]

Generally, the addition of sulfenyl halides to conjugated dienes occurs, under kinetic control, at either double bond with anti stereospecificity to give 1,2-adducts with either... [Pg.599]

These dications react with alkenes to give 1,2-disulfonium salts, and with conjugated dienes to afford 1,4-adducts. Furthermore, while 1,4-disubstituted linear dienes yield complex mixtures of unidentified substances, 1,3-cyclohexadiene (96) produces a moderately stable salt 102 (equation 106). The formation of the kinetically controlled 1,2-addition product has never been observed. [Pg.605]

Such equilibria are governed by thermodynamics, and so the abundances of the different species in solution are dependent on their relative thermodynamic stabilities. If, however, such a mixture of species is applied in, for example, a conjugate addition reaction, the product formation will be controlled by kinetics, and it is most likely that Cu2Li2Mc4 would be kinetically the most active species present. [Pg.32]

The and spectroscopy of a solution of 2-chloro-3,5-dinitropyridine in liquid ammonia at-40°C showed the formation of the C-6 adduct (10). This adduct is rather stable, since after 1 hr standing, no change in the spectrum was observed. It is interesting that at a somewhat lower temperature (-60°C) the addition takes place at C-4, i.e., formation of (9). Apparently one deals with the interesting concept of kinetically and thermodynamically controlled covalent adduct formation. At -60°C the addition is kinetically controlled, and at -40°C the addition is thermodynamically favored. The higher stability of the C-6 adduct compared to the C-4 adduct is probably due to the more extended conjugate resonance system (Scheme II.9). [Pg.18]

If tlie 1,2-addition is reversible (the nucleophile is a good leaving group), then we get thermodynamic control and the conjugate addition product predominates. When the 1,2-addition is not reversible (the nucleophile is a poor leaving group), we get kinetic control and simple addition. Stereochemical considerations are also partly responsible, since it will be easier for larger nucleophiles, especially enolate... [Pg.395]

Several other examples of conjugate addition of carbanions carried out under kinetically controlled conditions are given in Scheme 1.12. [Pg.42]

Conjugate addition. In the presence of 1 equivalent of triethylaluminum, cyanotrimethylsilane undergoes conjugate addition to a,/ -enones in high yield. The products arc converted into /J-cyano ketones by acid hydrolysis. The addition is kinetically controlled in toluene at room temperature, but thermodynamically controlled in refluxing THF (equation I). [Pg.113]

Stereoelectronic effects should also play an important role in the nucleophilic 1,4-additions of anions to conjugated systems. These effects should therefore influence the Michael reaction as well as the hydrocyanation of a,6-unsaturated ketones. Studies on these reactions provided evidence that the kinetically controlled addition of a nucleophile to a cyclohexenone derivative is indeed subject to stereoelectronic effects. [Pg.313]

The seven-membered metallacycles 89 (formed by ketone addition to [(butadiene)ZrCp2] cleanly add a nitrile molecule at elevated temperatures to yield the respective nine-membered metallacyclic products 96. Their hydrolysis then yields the 6-hydroxy-substituted non-conjugated unsaturated imines 97 under kinetic control. Within a few hours at room temperature these rearrange to the thermodynamically favored primary dienamine products 98.107 In this case the thermochemical diene conjugational energy makes the primary dienamines more stable than their conjugated imine tautomers (Scheme 32). [Pg.133]

We will return to kinetic and thermodynamic control in Chapter 13, where we will analyse the rates and energies involved a little more rigorously, but for now here is an example where conjugate addition is ensured by thermodynamic control. Note-the temperature ... [Pg.236]

How can the Z selectivity in Wittig reactions of unstabilized ylids be explained We have a more complex situation in this reaction than we had for the other eliminations we considered, because we have two separate processes to consider formation of the oxaphosphetane and decomposition of the oxaphosphetane to the alkene. The elimination step is the easier one to explain—it is stereospecific, with the oxygen and phosphorus departing in a syn-periplanar transition state (as in the base-catalysed Peterson reaction). Addition of the ylid to the aldehyde can, in principle, produce two diastere-omers of the intermediate oxaphosphetane. Provided that this step is irreversible, then the stereospecificity of the elimination step means that the ratio of the final alkene geometrical isomers will reflect the stereoselectivity of this addition step. This is almost certainly the case when R is not conjugating or anion-stabilizing the syn diastereoisomer of the oxaphosphetane is formed preferentially, and the predominantly Z-alkene that results reflects this. The Z selective Wittig reaction therefore consists of a kinetically controlled stereoselective first step followed by a stereospecific elimination from this intermediate. [Pg.816]

The 1,4 conjugate addition of HCN to a, d-unsaturated ketones has received partictUar attention, because of its selectivity in the steroid field [2S). Alkyl aluminum cyanides are used as catalysts in these reactions. Two methods have been developed which allow either thermodynamic (Equation (39 or kinetic control (Equation (40)) of the addition stereochemistry (Nagata reaction). [Pg.236]

The intramolecular conjugate addition of in situ, chemoselectively generated amines 2 bearing an electrophilic double bond in the cu-position leads to functionalized pyrrolidines and piperidines 3 under very mild conditions34. The cyclization step occurs smoothly and the piperidine and pyrrolidine derivatives are obtained as a mixture of diastereomers with good diastereose-lection in most cases. The reactions are under kinetic control and the geometry of the starting alkene does not seem to have an influence on the stereochemical outcome of the cyclization step. [Pg.1093]


See other pages where Conjugate addition kinetic control is mentioned: [Pg.63]    [Pg.32]    [Pg.101]    [Pg.491]    [Pg.1228]    [Pg.101]    [Pg.638]    [Pg.101]    [Pg.289]    [Pg.715]    [Pg.69]    [Pg.173]    [Pg.182]    [Pg.91]    [Pg.204]    [Pg.150]    [Pg.173]    [Pg.93]    [Pg.490]    [Pg.98]    [Pg.750]    [Pg.573]    [Pg.169]    [Pg.424]    [Pg.353]    [Pg.1120]    [Pg.1136]    [Pg.361]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



1,4-Addition reaction (conjugated kinetic control

Addition, controlled

Kinetic control addition

Kinetic controlled

Kinetically control

Kinetically controlled

© 2024 chempedia.info