Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary electrophoresis sample preparation

Capillary isotachophoresis was well established before the introduction of capillary electrophoresis, but was quickly overshadowed by the rapid development of the latter. Current use is limited for analytical applications [387-389] with capillary electrophoresis being preferred in most cases. Renewed interest in capillary isotachophoresis as a sample concentration and preseparation technique for capillary electrophoresis is responsible for a somewhat limited revival. The self-sharpening and concentration characteristics of capillary isotachophoresis make it more suitable than capillary electrophoresis for preparative scale separations, where single run and continuous flow instalments have been described for the isolation of milligram to gram quantities of material [392-394]. Capillary isotachophoresis is also suitable for the determination of values for effective ion mobility [395,396]. [Pg.674]

Several additional instrumental techniques have also been developed for bacterial characterization. Capillary electrophoresis of bacteria, which requires little sample preparation,42 is possible because most bacteria act as colloidal particles in suspension and can be separated by their electrical charge. Capillary electrophoresis provides information that may be useful for identification. Flow cytometry also can be used to identify and separate individual cells in a mixture.11,42 Infrared spectroscopy has been used to characterize bacteria caught on transparent filters.113 Fourier-transform infrared (FTIR) spectroscopy, with linear discriminant analysis and artificial neural networks, has been adapted for identifying foodbome bacteria25,113 and pathogenic bacteria in the blood.5... [Pg.12]

FIGURE 15.1 One-dimensional capillary electrophoresis separation of a protein homogenate prepared from the hTERT cell line. Both separations were preformed in 30 pm ID, 145 pm OD, 20 cm long capillaries at 20,000 V. (a) Micellar electrokinetic chromatography performed with a 100 mM CHES, 100 mM Tris, and 15 mM SDS buffer at pH 8.7. Sample is electro-kinetically injected with 0.25 kV for 1 s (b) Capillary sieving electrophoresis performed in 5% Dextran (513 kDa), 100 mM CHES, 100 mM Tris, 3.5 mM SDS, pH 8.7. [Pg.352]

Packed capillaries with a larger inner diameter may be useful in preparative separations. These will find an application in proteome research as a part of multidimensional separation systems that will replace 2-D gel electrophoresis. The preparative CEC will require solving of the problems related to heat dissipation since the radial temperature gradient negatively affects the separations, and sample injection. The fabrication of sintered frits in larger bore capillaries is also very difficult. However, in situ polymerized monolithic frits can be fabricated in capillaries of virtually any diameter [190]. [Pg.46]

Table 12 gives an orientation help for CE separations sorted by pharmaceutical substances published in review articles. As this chapter focuses on the technical development of drug substances and products, only drug substances and drug formulations are covered. A useful compendium of CE applications in the pharmaceutical environment can be found in the book Capillary Electrophoresis Methods for Pharmaceutical Analysis written by G. Lunn. The book covers more than 700 active pharmaceutical ingredients and contains short method descriptions, sample preparation steps, and references. [Pg.119]

One drawback of capillary electrophoresis is the state of the capillary wall. Often, constituents of the buffer or analyte are absorbed on the sin-face, causing not only an irreproducible shift of EOF, but even the possibility of questionable binding isotherms. A lot of effort has gone into overcoming this problem. Capillaries with coated inner walls are now commercially available and capillary electrophoresis on chips of different materials is also under development now. Not only do these chips represent a miniaturized form of capillary electrophoresis, but this technique also enables the incorporation of such sample preparation steps as preconcentration and even PCR and immobilization of immunoreagents. It is not difficult to anticipate a very exciting development in this field, one with a high commercial impact. [Pg.360]

This chapter focuses on acylcarnitine analysis in various sample types following derivatization to butyl- or methylesters and flow injection ESI-MS/MS. Capillary electrophoresis MS/MS and LC-MS/MS methods have also been described in recent years with the noted benefits of isomer separation and further simplification of the sample preparation steps, although at the cost of larger sample volume requirements and longer analytical times [53, 54]. [Pg.176]

Nowadays, the demand for nanoanalyses is increasing continuously and some advancement has been made in chromatographic and capillary electrophoresis instruments. The integration of all the steps of analysis, that is, sample preparation, injection, separation, and detection on a single chip, is the most difficult task for scientists. In spite of many encouraging advancements in chip LC/CE instrumentation we are still far away from realizing the visions presented a decade ago. Briefly, more advances are needed to turn the dream of real nanochromatography and capillary electrophoresis into a mature analytical tool. [Pg.85]

We have carried out an extensive literature search on sample preparation technologies and found many papers on conventional chromatography and capillary electrophoresis methods but few on NLC and NCE. It is important to mention here that sample preparation methodologies used in conventional chromatography and capillary electrophoresis can be used in NLC and NCE. The interested reader can consult our earlier books for details [20,21], However, attempts have been made to describe sample preparation protocols required in NLC and NCE techniques. Some of the important requirements and preparations are discussed below. [Pg.111]

The extraction is the most important step in sample preparation of biological and environmental matrices. Many devices have been used for the extraction procedures. The most important techniques used before conventional chromatography and capillary electrophoresis analyses include ... [Pg.119]

Once the sample preparation is complete, the analysis is carried out by an instrument of choice. A variety of instruments are used for different types of analysis, depending on the information to be acquired for example, chromatography for organic analysis, atomic spectroscopy for metal analysis, capillary electrophoresis for DNA sequencing, and electron microscopy for small structures. Common analytical instrumentation and the sample preparation associated with them are listed in Table 1.1. The sample preparation depends on the analytical techniques to be employed and their capabilities. For instance, only a few microliters can be injected into a gas chromatograph. So in the example of the analysis of pesticides in fish liver, the ultimate product is a solution of a few microliters that can be injected into a gas chromatograph. Sampling, sample preservation, and sample preparation are... [Pg.2]

Traditional biochemical techniques such as liquid chromatography (LC), gel electrophoresis, capillary electrophoresis (CE), and mass spectrometry (MS) have been widely used for the complete analysis of salivary proteins and peptides. The recent advances in these technical approaches applied to peptidomics have allowed a better comprehensive analysis of peptides in human whole saliva, envisioning the identification of potential salivary biomarkers of oral and systemic diseases. Sample preparation is a critical experimental step for the successful identification of peptides using MS-based approaches, for their quantitation and identification of PTMs. [Pg.224]

Sample preparation procedures for GC are generially more involved. For example, for methadone hydrochloride, 0.5jV sodium hydroxide is added to give the free base, followed by extraction with methylene chloride. An internal standard is added after the extract is dried with anhydrous sodium sulfate [3, p. 970]. The assay of interleukin-la formulated with human serum albumin does not require any sample treatment prior to analysis by capillary electrophoresis [44]. [Pg.25]


See other pages where Capillary electrophoresis sample preparation is mentioned: [Pg.277]    [Pg.54]    [Pg.147]    [Pg.779]    [Pg.409]    [Pg.127]    [Pg.384]    [Pg.606]    [Pg.27]    [Pg.145]    [Pg.397]    [Pg.201]    [Pg.61]    [Pg.535]    [Pg.367]    [Pg.506]    [Pg.185]    [Pg.41]    [Pg.211]    [Pg.3]    [Pg.40]    [Pg.355]    [Pg.259]    [Pg.616]    [Pg.239]    [Pg.59]    [Pg.83]    [Pg.109]    [Pg.128]    [Pg.202]    [Pg.633]    [Pg.252]   
See also in sourсe #XX -- [ Pg.9 , Pg.367 ]




SEARCH



Capillary sample

Electrophoresis sample preparation

Preparative capillary

Preparative electrophoresis

Sample capillary electrophoresis

© 2024 chempedia.info